Search results
Results from the WOW.Com Content Network
Conditional expectation. In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can ...
In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first moment) is a generalization of the weighted average. Informally, the expected value is the mean of the possible values a random variable can take, weighted by the probability of those ...
Law of total expectation. The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations[2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value is defined, and is any random variable on the same ...
The sample median may or may not be an order statistic, since there is a single middle value only when the number n of observations is odd. More precisely, if n = 2 m +1 for some integer m , then the sample median is X ( m + 1 ) {\displaystyle X_{(m+1)}} and so is an order statistic.
Prospect theory. Daniel Kahneman, who won the 2002 Nobel Memorial Prize in Economics for his work developing prospect theory. Prospect theory is a theory of behavioral economics, judgment and decision making that was developed by Daniel Kahneman and Amos Tversky in 1979. [1] The theory was cited in the decision to award Kahneman the 2002 Nobel ...
Informant (statistics) In statistics, the score (or informant[1]) is the gradient of the log-likelihood function with respect to the parameter vector. Evaluated at a particular point of the parameter vector, the score indicates the steepness of the log-likelihood function and thereby the sensitivity to infinitesimal changes to the parameter values.
Probability theory. In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is The parameter is the mean or expectation of the distribution (and also its median and mode), while ...
For a Bernoulli random variable, the expected value is the theoretical probability of success, and the average of n such variables (assuming they are independent and identically distributed (i.i.d.)) is precisely the relative frequency. This image illustrates the convergence of relative frequencies to their theoretical probabilities.