Search results
Results from the WOW.Com Content Network
Hyperbola. A hyperbola is an open curve with two branches, the intersection of a plane with both halves of a double cone. The plane does not have to be parallel to the axis of the cone; the hyperbola will be symmetrical in any case. Hyperbola (red): features. In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its ...
Hyperbolic functions occur in the calculations of angles and distances in hyperbolic geometry. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary), cubic equations, and Laplace's equation in Cartesian coordinates. Laplace's equations are important in many areas of physics, including ...
As above, for e = 0, the graph is a circle, for 0 < e < 1 the graph is an ellipse, for e = 1 a parabola, and for e > 1 a hyperbola. The polar form of the equation of a conic is often used in dynamics; for instance, determining the orbits of objects revolving about the Sun. [20]
A radial hyperbolic trajectory is a non-periodic trajectory on a straight line where the relative speed of the two objects always exceeds the escape velocity. There are two cases: the bodies move away from each other or towards each other. This is a hyperbolic orbit with semi-minor axis = 0 and eccentricity = 1.
The hyperbolic angle parametrizes the unit hyperbola, which has hyperbolic functions as coordinates. In mathematics, hyperbolic angle is an invariant measure as it is preserved under hyperbolic rotation. The hyperbola xy = 1 is rectangular with semi-major axis , analogous to the circular angle equaling the area of a circular sector in a circle ...
In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular: The eccentricity of a circle is 0. The eccentricity of an ellipse which is not a circle is between 0 and 1.
the equation of a hyperbola; since inversion is a birational transformation and the hyperbola is a rational curve, this shows the lemniscate is also a rational curve, which is to say a curve of genus zero. If we apply the transformation to the Fermat curve x n + y n = 1, where n is odd, we obtain
Paraboloid. In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry. Every plane section of a paraboloid by a plane parallel to the axis of symmetry is a parabola.