Search results
Results from the WOW.Com Content Network
The optical band gap (see below) determines what portion of the solar spectrum a photovoltaic cell absorbs. [18] Strictly, a semiconductor will not absorb photons of energy less than the band gap; whereas most of the photons with energies exceeding the band gap will generate heat. Neither of them contribute to the efficiency of a solar cell.
To understand how band structure changes relative to the Fermi level in real space, a band structure plot is often first simplified in the form of a band diagram. In a band diagram the vertical axis is energy while the horizontal axis represents real space. Horizontal lines represent energy levels, while blocks represent energy bands.
In semiconductors, the band gap of a semiconductor can be of two basic types, a direct band gap or an indirect band gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence band are each characterized by a certain crystal momentum (k-vector) in the Brillouin zone. If the k-vectors are different, the ...
Band diagram for Schottky barrier at equilibrium Band diagram for semiconductor heterojunction at equilibrium. In solid-state physics of semiconductors, a band diagram is a diagram plotting various key electron energy levels (Fermi level and nearby energy band edges) as a function of some spatial dimension, which is often denoted x. [1]
In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.
Band diagrams for a straddling-gap type heterojunction, as understood by Anderson's rule. The junction alignment at equilibrium (bottom) is predicted based on a hypothetical flat-vacuum alignment (top). Anderson's rule is used for the construction of energy band diagrams of the heterojunction between two semiconductor materials.
Band diagram for stradding gap, n-n semiconductor heterojunction at equilibrium. The behaviour of a semiconductor junction depends crucially on the alignment of the energy bands at the interface. Semiconductor interfaces can be organized into three types of heterojunctions: straddling gap (type I), staggered gap (type II) or broken gap (type ...
Here, height is energy while width is the density of available states for a certain energy in the material listed. The shade follows the Fermi–Dirac distribution (black: all states filled, white: no state filled). In metals and semimetals the Fermi level E F lies inside at least one band.