Search results
Results from the WOW.Com Content Network
In fluid mechanics, fluid flow through porous media is the manner in which fluids behave when flowing through a porous medium, for example sponge or wood, or when filtering water using sand or another porous material. As commonly observed, some fluid flows through the media while some mass of the fluid is stored in the pores present in the media.
Darcy's law is an equation that describes the flow of a fluid flow trough a porous medium and through a Hele-Shaw cell.The law was formulated by Henry Darcy based on results of experiments [1] on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences.
Fluid flow through porous media. Fluid flow through porous media is a subject of common interest and has emerged a separate field of study. The study of more general behaviour of porous media involving deformation of the solid frame is called poromechanics. The theory of porous flows has applications in inkjet printing [7] and nuclear waste ...
The porous medium equation name originates from its use in describing the flow of an ideal gas in a homogeneous porous medium. [6] We require three equations to completely specify the medium's density , flow velocity field , and pressure : the continuity equation for conservation of mass; Darcy's law for flow in a porous medium; and the ideal gas equation of state.
The global proportionality constant for the flow of water through a porous medium is called the hydraulic conductivity (K, unit: m/s). Permeability, or intrinsic permeability, ( k , unit: m 2 ) is a part of this, and is a specific property characteristic of the solid skeleton and the microstructure of the porous medium itself, independently of ...
Porous media whose pore space is filled with a single fluid phase, typically a liquid, is considered to be saturated. Porous media whose pore space is only partially fluid is a fluid is known to be unsaturated. The concept of a porous medium originally emerged in soil mechanics, and in particular in the works of Karl von Terzaghi, the father of ...
Morris Muskat et al. [1] [2] developed the governing equations for multiphase flow (one vector equation for each fluid phase) in porous media as a generalisation of Darcy's equation (or Darcy's law) for water flow in porous media. The porous media are usually sedimentary rocks such as clastic rocks (mostly sandstone) or carbonate rocks.
This relationship, which holds true for a variety of situations, captures the essence of Lucas and Washburn's equation and shows that capillary penetration and fluid transport through porous structures exhibit diffusive behaviour akin to that which occurs in numerous physical and chemical systems.