enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heteroskedasticity-consistent standard errors - Wikipedia

    en.wikipedia.org/wiki/Heteroskedasticity...

    Heteroskedasticity-consistent standard errors that differ from classical standard errors may indicate model misspecification. Substituting heteroskedasticity-consistent standard errors does not resolve this misspecification, which may lead to bias in the coefficients. In most situations, the problem should be found and fixed. [5]

  3. White test - Wikipedia

    en.wikipedia.org/wiki/White_test

    White test is a statistical test that establishes whether the variance of the errors in a regression model is constant: that is for homoskedasticity. This test, and an estimator for heteroscedasticity-consistent standard errors , were proposed by Halbert White in 1980. [ 1 ]

  4. Glejser test - Wikipedia

    en.wikipedia.org/wiki/Glejser_test

    Step 3: Select the equation with the highest R 2 and lowest standard errors to represent heteroscedasticity. Step 4: Perform a t-test on the equation selected from step 3 on γ 1 . If γ 1 is statistically significant, reject the null hypothesis of homoscedasticity.

  5. Homoscedasticity and heteroscedasticity - Wikipedia

    en.wikipedia.org/wiki/Homoscedasticity_and...

    Heteroscedasticity-consistent standard errors (HCSE), while still biased, improve upon OLS estimates. [2] HCSE is a consistent estimator of standard errors in regression models with heteroscedasticity. This method corrects for heteroscedasticity without altering the values of the coefficients.

  6. Newey–West estimator - Wikipedia

    en.wikipedia.org/wiki/Newey–West_estimator

    A Newey–West estimator is used in statistics and econometrics to provide an estimate of the covariance matrix of the parameters of a regression-type model where the standard assumptions of regression analysis do not apply. [1]

  7. Breusch–Pagan test - Wikipedia

    en.wikipedia.org/wiki/Breusch–Pagan_test

    In statistics, the Breusch–Pagan test, developed in 1979 by Trevor Breusch and Adrian Pagan, [1] is used to test for heteroskedasticity in a linear regression model. It was independently suggested with some extension by R. Dennis Cook and Sanford Weisberg in 1983 (Cook–Weisberg test). [2]

  8. Goldfeld–Quandt test - Wikipedia

    en.wikipedia.org/wiki/Goldfeld–Quandt_test

    The second test proposed in the paper is a nonparametric one and hence does not rely on the assumption that the errors have a normal distribution. For this test, a single regression model is fitted to the complete dataset. The squares of the residuals are listed according to the order of the pre-identified explanatory variable.

  9. Park test - Wikipedia

    en.wikipedia.org/wiki/Park_test

    [2] [3] Stephen Goldfeld and Richard E. Quandt raise concerns about the assumed structure, cautioning that the v i may be heteroscedastic and otherwise violate assumptions of ordinary least squares regression.