Search results
Results from the WOW.Com Content Network
Existing Eiffel software uses the string classes (such as STRING_8) from the Eiffel libraries, but Eiffel software written for .NET must use the .NET string class (System.String) in many cases, for example when calling .NET methods which expect items of the .NET type to be passed as arguments. So, the conversion of these types back and forth ...
Many languages have explicit pointers or references. Reference types differ from these in that the entities they refer to are always accessed via references; for example, whereas in C++ it's possible to have either a std:: string and a std:: string *, where the former is a mutable string and the latter is an explicit pointer to a mutable string (unless it's a null pointer), in Java it is only ...
The JScience library has a Complex number class. The JAS library allows the use of complex numbers. Netlib has a complex number class for Java. javafastcomplex also adds complex number support for Java; jcomplexnumber is a project on implementation of complex number in Java. JLinAlg includes complex numbers with arbitrary precision.
For example, Java's numeric types are primitive, while classes are user-defined. A value of an atomic type is a single data item that cannot be broken into component parts. A value of a composite type or aggregate type is a collection of data items that can be accessed individually. [ 6 ]
Integer addition, for example, can be performed as a single machine instruction, and some offer specific instructions to process sequences of characters with a single instruction. [7] But the choice of primitive data type may affect performance, for example it is faster using SIMD operations and data types to operate on an array of floats.
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
Go: the standard library package math/big implements arbitrary-precision integers (Int type), rational numbers (Rat type), and floating-point numbers (Float type) Guile: the built-in exact numbers are of arbitrary precision. Example: (expt 10 100) produces the expected (large) result. Exact numbers also include rationals, so (/ 3 4) produces 3/4.
Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).