Search results
Results from the WOW.Com Content Network
However, if data is a DataFrame, then data['a'] returns all values in the column(s) named a. To avoid this ambiguity, Pandas supports the syntax data.loc['a'] as an alternative way to filter using the index. Pandas also supports the syntax data.iloc[n], which always takes an integer n and returns the nth value, counting from 0. This allows a ...
In tableau software, data blending is a technique to combine data from multiple data sources in the data visualization. [17] A key differentiator is the granularity of the data join. When blending data into a single data set, this would use a SQL database join, which would usually join at the most granular level, using an ID field where ...
Dataframe may refer to: A tabular data structure common to many data processing libraries: pandas (software) § DataFrames; The Dataframe API in Apache Spark; Data frames in the R programming language; Frame (networking)
Simpler queries – star-schema join-logic is generally simpler than the join logic required to retrieve data from a highly normalized transactional schema. Simplified business reporting logic – when compared to highly normalized schemas, the star schema simplifies common business reporting logic, such as period-over-period and as-of reporting.
The way data is distributed across HDFS makes it expensive to join data. In a distributed relational database we can co-locate records with the same primary and foreign keys on the same node in a cluster. This makes it relatively cheap to join very large tables. No data needs to travel across the network to perform the join.
Data warehouse automation (DWA) refers to the process of accelerating and automating the data warehouse development cycles, while assuring quality and consistency. DWA is believed to provide automation of the entire lifecycle of a data warehouse, from source system analysis to testing to documentation .
An aggregate is a type of summary used in dimensional models of data warehouses to shorten the time it takes to provide answers to typical queries on large sets of data. The reason why aggregates can make such a dramatic increase in the performance of a data warehouse is the reduction of the number of rows to be accessed when responding to a ...
Dbt enables analytics engineers to transform data in their warehouses by writing select statements, and turns these select statements into tables and views. Dbt does the transformation (T) in extract, load, transform (ELT) processes – it does not extract or load data, but is designed to be performant at transforming data already inside of a ...