Search results
Results from the WOW.Com Content Network
In the case of the number 4, partitions 4 and 1 + 1 + 1 + 1 are conjugate pairs, and partitions 3 + 1 and 2 + 1 + 1 are conjugate of each other. Of particular interest are partitions, such as 2 + 2, which have themselves as conjugate. Such partitions are said to be self-conjugate. [7] Claim: The number of self-conjugate partitions is the same ...
The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts. The number q(n) is also equal to the number of partitions of n in which only odd summands are permitted. [20]
These two types of partition are in bijection with each other, by a diagonal reflection of their Young diagrams. Their numbers can be arranged into a triangle, the triangle of partition numbers , in which the n {\displaystyle n} th row gives the partition numbers p 1 ( n ) , p 2 ( n ) , … , p n ( n ) {\displaystyle p_{1}(n),p_{2}(n),\dots ,p ...
The remaining partitions of these four elements either do not have 3 in a set by itself, or they have a larger singleton set {4}, and in either case are not counted in A 3,2. In the same notation, Sun & Wu (2011) augment the triangle with another diagonal to the left of its other values, of the numbers
The total number of partitions of an n-element set is the Bell number B n. The first several Bell numbers are B 0 = 1, B 1 = 1, B 2 = 2, B 3 = 5, B 4 = 15, B 5 = 52, and B 6 = 203 (sequence A000110 in the OEIS ).
Generally, a partition is a division of a whole into non-overlapping parts. Among the kinds of partitions considered in mathematics are partition of a set or an ordered partition of a set, partition of a graph, partition of an integer, partition of an interval, partition of unity, partition of a matrix; see block matrix, and
In number theory, Glaisher's theorem is an identity useful to the study of integer partitions.Proved in 1883 [1] by James Whitbread Lee Glaisher, it states that the number of partitions of an integer into parts not divisible by is equal to the number of partitions in which no part is repeated or more times.
In plain words, e.g., the first congruence means that If a number is 4 more than a multiple of 5, i.e. it is in the sequence 4, 9, 14, 19, 24, 29, . . . then the number of its partitions is a multiple of 5. Later other congruences of this type were discovered, for numbers and for Tau-functions.