Search results
Results from the WOW.Com Content Network
In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum. It is named after nineteenth century German mathematician Bernhard Riemann . One very common application is in numerical integration , i.e., approximating the area of functions or lines on a graph, where it is also known as the rectangle rule .
Numberphile is an educational YouTube channel featuring videos that explore topics from a variety of fields of mathematics. [2] [3] In the early days of the channel, each video focused on a specific number, but the channel has since expanded its scope, [4] featuring videos on more advanced mathematical concepts such as Fermat's Last Theorem, the Riemann hypothesis [5] and Kruskal's tree ...
The function has the series expansion = = +, where = ()! [ ()] | = = [()], where the sum extends over ρ, the non-trivial zeros of the zeta function, in order of | |.. This expansion plays a particularly important role in Li's criterion, which states that the Riemann hypothesis is equivalent to having λ n > 0 for all positive n.
These theories depended on the properties of a function defined on Riemann surfaces. For example, the Riemann–Roch theorem (Roch was a student of Riemann) says something about the number of linearly independent differentials (with known conditions on the zeros and poles) of a Riemann surface.
An example of Riemann sums for the integral ... Riemann sum; Global file usage. The following other wikis use this file: Usage on de.wikibooks.org
One popular restriction is the use of "left-hand" and "right-hand" Riemann sums. In a left-hand Riemann sum, t i = x i for all i, and in a right-hand Riemann sum, t i = x i + 1 for all i. Alone this restriction does not impose a problem: we can refine any partition in a way that makes it a left-hand or right-hand sum by subdividing it at each t i.
In real analysis, the Darboux integral is constructed using Darboux sums and is one possible definition of the integral of a function.Darboux integrals are equivalent to Riemann integrals, meaning that a function is Darboux-integrable if and only if it is Riemann-integrable, and the values of the two integrals, if they exist, are equal. [1]
In mathematics, the Riemann–Lebesgue lemma, named after Bernhard Riemann and Henri Lebesgue, states that the Fourier transform or Laplace transform of an L 1 function vanishes at infinity. It is of importance in harmonic analysis and asymptotic analysis .