enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Absolute value (algebra) - Wikipedia

    en.wikipedia.org/wiki/Absolute_value_(algebra)

    The standard absolute value on the integers. The standard absolute value on the complex numbers.; The p-adic absolute value on the rational numbers.; If R is the field of rational functions over a field F and () is a fixed irreducible polynomial over F, then the following defines an absolute value on R: for () in R define | | to be , where () = () and ((), ()) = = ((), ()).

  3. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    The map is called a regular coordinate transformation or regular variable substitution, where regular refers to the -ness of . Usually one will write x = Φ ( y ) {\displaystyle x=\Phi (y)} to indicate the replacement of the variable x {\displaystyle x} by the variable y {\displaystyle y} by substituting the value of Φ {\displaystyle \Phi } in ...

  4. Absolute value - Wikipedia

    en.wikipedia.org/wiki/Absolute_value

    The real absolute value function is an example of a continuous function that achieves a global minimum where the derivative does not exist. The subdifferential of | x | at x = 0 is the interval [−1, 1]. [14] The complex absolute value function is continuous everywhere but complex differentiable nowhere because it violates the Cauchy–Riemann ...

  5. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    The absolute value of the Jacobian determinant at p gives us the factor by which the function f expands or shrinks volumes near p; this is why it occurs in the general substitution rule. The Jacobian determinant is used when making a change of variables when evaluating a multiple integral of a function over a region within its domain. To ...

  6. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    The complex numbers of absolute value one form the unit circle. Adding a fixed complex number to all complex numbers defines a translation in the complex plane, and multiplying by a fixed complex number is a similarity centered at the origin (dilating by the absolute value, and rotating by the argument).

  7. De Morgan's laws - Wikipedia

    en.wikipedia.org/wiki/De_Morgan's_laws

    De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.

  8. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    where | g | is the absolute value of the determinant of the matrix of scalar coefficients of the metric tensor . These are useful when dealing with divergences and Laplacians (see below). The covariant derivative of a vector field with components is given by:

  9. Summation by parts - Wikipedia

    en.wikipedia.org/wiki/Summation_by_parts

    The formula for an integration by parts is () ′ = [() ()] ′ ().. Beside the boundary conditions, we notice that the first integral contains two multiplied functions, one which is integrated in the final integral (′ becomes ) and one which is differentiated (becomes ′).