Search results
Results from the WOW.Com Content Network
The stress and strain can be normal, shear, or a mixture, and can also be uniaxial, biaxial, or multiaxial, and can even change with time. The form of deformation can be compression, stretching, torsion, rotation, and so on. If not mentioned otherwise, stress–strain curve typically refers to the relationship between axial normal stress and ...
This is not true since the actual area will decrease while deforming due to elastic and plastic deformation. The curve based on the original cross-section and gauge length is called the engineering stress–strain curve, while the curve based on the instantaneous cross-section area and length is called the true stress–strain curve. Unless ...
For metals, the (true) stress tends to rise monotonically with increasing strain, although the gradient (work hardening rate) tends to fall off progressively. This is primarily due to a progressive fall in dislocation mobility, caused by interactions between them. With polymers, on the other hand, the curve can be more complex.
The work-hardened steel bar has a large enough number of dislocations that the strain field interaction prevents all plastic deformation. Subsequent deformation requires a stress that varies linearly with the strain observed, the slope of the graph of stress vs. strain is the modulus of elasticity, as usual.
The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening), showing a smooth elastic-plastic transition.
English: Stress vs. Strain curve for structural steel. Reference numbers are: 1 - Ultimate strength (nominal) 2 - Yield strength (elastic limit) 3 - Rupture; 4 - Strain hardening region; 5 - Necking region; A: Apparent stress (F/S 0) B: Actual stress (F/S) — Original cross-sectional area
The (infinitesimal) strain tensor (symbol ) is defined in the International System of Quantities (ISQ), more specifically in ISO 80000-4 (Mechanics), as a "tensor quantity representing the deformation of matter caused by stress. Strain tensor is symmetric and has three linear strain and three shear strain (Cartesian) components."
Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...