Search results
Results from the WOW.Com Content Network
This is a generalization of the concept of strongly convex function; by taking () = we recover the definition of strong convexity. It is worth noting that some authors require the modulus ϕ {\displaystyle \phi } to be an increasing function, [ 17 ] but this condition is not required by all authors.
In mathematical finance, convexity refers to non-linearities in a financial model.In other words, if the price of an underlying variable changes, the price of an output does not change linearly, but depends on the second derivative (or, loosely speaking, higher-order terms) of the modeling function.
In finance, bond convexity is a measure of the non-linear relationship of bond prices to changes in interest rates, and is defined as the second derivative of the price of the bond with respect to interest rates (duration is the first derivative). In general, the higher the duration, the more sensitive the bond price is to the change in ...
Convexity is a geometric property with a variety of applications in economics. [1] Informally, an economic phenomenon is convex when "intermediates (or combinations ...
In mathematics, the modulus of convexity and the characteristic of convexity are measures of "how convex" the unit ball in a Banach space is. In some sense, the modulus of convexity has the same relationship to the ε-δ definition of uniform convexity as the modulus of continuity does to the ε-δ definition of continuity.
Convex geometry is a relatively young mathematical discipline. Although the first known contributions to convex geometry date back to antiquity and can be traced in the works of Euclid and Archimedes, it became an independent branch of mathematics at the turn of the 20th century, mainly due to the works of Hermann Brunn and Hermann Minkowski in dimensions two and three.
Convex polygon, a polygon which encloses a convex set of points; Convex polytope, a polytope with a convex set of points; Convex metric space, a generalization of the convexity notion in abstract metric spaces; Convex function, when the line segment between any two points on the graph of the function lies above or on the graph
In complex geometry and analysis, the notion of convexity and its generalizations play an important role in understanding function behavior. Examples of classes of functions with a rich structure are, in addition to the convex functions, the subharmonic functions and the plurisubharmonic functions.