enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sum of two cubes - Wikipedia

    en.wikipedia.org/wiki/Sum_of_two_cubes

    A Taxicab number is the smallest positive number that can be expressed as a sum of two positive integer cubes in n distinct ways. The smallest taxicab number after Ta(1) = 1, is Ta(2) = 1729, [4] expressed as

  3. Basel problem - Wikipedia

    en.wikipedia.org/wiki/Basel_problem

    The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares.It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2]

  4. Sums of three cubes - Wikipedia

    en.wikipedia.org/wiki/Sums_of_three_cubes

    Sum of four cubes problem, whether every integer is a sum of four cubes Euler's sum of powers conjecture § k = 3 , relating to cubes that can be written as a sum of three positive cubes Plato's number , an ancient text possibly discussing the equation 3 3 + 4 3 + 5 3 = 6 3

  5. Sum of four cubes problem - Wikipedia

    en.wikipedia.org/wiki/Sum_of_four_cubes_problem

    The sum of four cubes problem [1] asks whether every integer is the sum of four cubes of integers. It is conjectured the answer is affirmative, but this conjecture has been neither proven nor disproven. [2] Some of the cubes may be negative numbers, in contrast to Waring's problem on sums of cubes, where they are required to be positive.

  6. Taxicab number - Wikipedia

    en.wikipedia.org/wiki/Taxicab_number

    In mathematics, the nth taxicab number, typically denoted Ta(n) or Taxicab(n), is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. [1] The most famous taxicab number is 1729 = Ta(2) = 1 3 + 12 3 = 9 3 + 10 3, also known as the Hardy-Ramanujan number. [2] [3]

  7. Waring's problem - Wikipedia

    en.wikipedia.org/wiki/Waring's_problem

    G(3) is at least 4 (since cubes are congruent to 0, 1 or −1 mod 9); for numbers less than 1.3 × 10 9, 1 290 740 is the last to require 6 cubes, and the number of numbers between N and 2N requiring 5 cubes drops off with increasing N at sufficient speed to have people believe that G(3) = 4; [22] the largest number now known not to be a sum of ...

  8. Composition (combinatorics) - Wikipedia

    en.wikipedia.org/wiki/Composition_(combinatorics)

    Each positive integer n has 2 n1 distinct compositions. Bijection between 3 bit binary numbers and compositions of 4 A weak composition of an integer n is similar to a composition of n , but allowing terms of the sequence to be zero: it is a way of writing n as the sum of a sequence of non-negative integers .

  9. List of sums of reciprocals - Wikipedia

    en.wikipedia.org/wiki/List_of_sums_of_reciprocals

    The sum of the reciprocals of the square numbers (the Basel problem) is the transcendental number ⁠ π 2 / 6 ⁠, or ζ(2) where ζ is the Riemann zeta function. The sum of the reciprocals of the cubes of positive integers is called Apéry's constant ζ(3) , and equals approximately 1.2021 .