Search results
Results from the WOW.Com Content Network
Categorical logic is the branch of mathematics in which tools and concepts from category theory are applied to the study of mathematical logic. It is also notable for its connections to theoretical computer science. [1] In broad terms, categorical logic represents both syntax and semantics by a category, and an interpretation by a functor.
An example in topology is the composition of paths, where the identity and association conditions hold only up to reparameterization, and hence up to homotopy, which is the 2-isomorphism for this 2-category. These n-isomorphisms must well behave between hom-sets and expressing this is the difficulty in the definition of weak n-categories.
For example, John Baez has shown a link between Feynman diagrams in physics and monoidal categories. [7] Another application of category theory, more specifically topos theory, has been made in mathematical music theory, see for example the book The Topos of Music, Geometric Logic of Concepts, Theory, and Performance by Guerino Mazzola.
In quantum field theory, there exist quantum categories. [16] [17] [18] and quantum double groupoids. [18]One can consider quantum double groupoids to be fundamental groupoids defined via a 2-functor, which allows one to think about the physically interesting case of quantum fundamental groupoids (QFGs) in terms of the bicategory Span(Groupoids), and then constructing 2-Hilbert spaces and 2 ...
Visual difference between nominal and ordinal data (w/examples), the two scales of categorical data [2] A nominal variable, or nominal group, is a group of objects or ideas collectively grouped by a particular qualitative characteristic. [3] Nominal variables do not have a natural order, which means that statistical analyses of these variables ...
There is some overlap between this algebraic notion and the categorical notion of kernel since both generalize the situation of groups and modules mentioned above. In general, however, the universal-algebraic notion of kernel is more like the category-theoretic concept of kernel pair. In particular, kernel pairs can be used to interpret kernels ...
On the other hand, though the above properties guarantee the existence of a categorical equivalence (given a sufficiently strong version of the axiom of choice in the underlying set theory), the missing data is not completely specified, and often there are many choices. It is a good idea to specify the missing constructions explicitly whenever ...
In mathematics, categorification is the process of replacing set-theoretic theorems with category-theoretic analogues. Categorification, when done successfully, replaces sets with categories, functions with functors, and equations with natural isomorphisms of functors satisfying additional properties. The term was coined by Louis Crane. [1] [2]