Search results
Results from the WOW.Com Content Network
The nucleic acid notation currently in use was first formalized by the International Union of Pure and Applied Chemistry (IUPAC) in 1970. [1] This universally accepted notation uses the Roman characters G, C, A, and T, to represent the four nucleotides commonly found in deoxyribonucleic acids (DNA).
At the time, "yeast nucleic acid" (RNA) was thought to occur only in plants, while "thymus nucleic acid" (DNA) only in animals. The latter was thought to be a tetramer, with the function of buffering cellular pH. [199] [200] In 1937, William Astbury produced the first X-ray diffraction patterns that showed that DNA had a regular structure. [201]
The first table—the standard table—can be used to translate nucleotide triplets into the corresponding amino acid or appropriate signal if it is a start or stop codon. The second table, appropriately called the inverse, does the opposite: it can be used to deduce a possible triplet code if the amino acid is known.
This is the standard genetic code (NCBI table 1), in amino acid→codon form. By default it is the DNA code; for the RNA code (using Uracil rather than Thymine), add template parameter "T=U". Also listed are the compressed codon forme, using IUPAC nucleic acid notation. It's referenced in a couple of places, so have a single master copy.
A pseudoknot is a nucleic acid secondary structure containing at least two stem-loop structures in which half of one stem is intercalated between the two halves of another stem. The pseudoknot was first recognized in the turnip yellow mosaic virus in 1982. [2]
Deoxyribonucleic acid (DNA) is a nucleic acid containing the genetic instructions used in the development and functioning of all known living organisms. The chemical DNA was discovered in 1869, but its role in genetic inheritance was not demonstrated until 1943. The DNA segments that carry this genetic information are called genes.
Nuclear magnetic resonance spectroscopy of nucleic acids; Nucleic acid analogue; Nucleic acid metabolism; Nucleic acid methods; Nucleic acid notation; Nucleic acid quantitation; Nucleic acid quaternary structure; Nucleic acid sequence; Nucleic acid thermodynamics; Nucleoside triphosphate
The nucleic acids constitute one of the four major macromolecules essential for all known forms of life. RNA is assembled as a chain of nucleotides . Cellular organisms use messenger RNA ( mRNA ) to convey genetic information (using the nitrogenous bases of guanine , uracil , adenine , and cytosine , denoted by the letters G, U, A, and C) that ...