Search results
Results from the WOW.Com Content Network
Aiming to emphasize the distinction between the bacterial flagella and the eukaryotic cilia and flagella, some authors attempted to replace the name of these two eukaryotic structures with "undulipodia" (e.g., all papers by Margulis since the 1970s) [61] or "cilia" for both (e.g., Hülsmann, 1992; [62] Adl et al., 2012; [63] most papers of ...
In molecular biology, an axoneme, also called an axial filament, is the microtubule-based cytoskeletal structure that forms the core of a cilium or flagellum. [ 1 ] [ 2 ] Cilia and flagella are found on many cells , organisms , and microorganisms , to provide motility.
Bacterial flagella are helical filaments, each with a rotary motor at its base which can turn clockwise or counterclockwise. [16] [17] [18] They provide two of several kinds of bacterial motility. [19] [20] Archaeal flagella are called archaella, and function in much the same way as bacterial flagella
Flagellins are a family of proteins present in flagellated bacteria [1] which arrange themselves in a hollow cylinder to form the filament in a bacterial flagellum. Flagellin has a mass on average of about 40,000 daltons. [2] [3] Flagellins are the principal component of bacterial flagella that have a crucial role in bacterial motility.
Flagella in eukaryotes are supported by microtubules in a characteristic arrangement, with nine fused pairs surrounding two central singlets. These arise from a basal body. In some flagellates, flagella direct food into a cytostome or mouth, where food is ingested. Flagella role in classifying eukaryotes.
In molecular biology, the flagellar motor switch protein (Flig) is one of three proteins in certain bacteria coded for by the gene fliG. [1] The other two proteins are FliN coded for by fliN, [2] and FliM coded for by fliM. [3] The protein complex regulates the direction of flagellar rotation and hence controls swimming behaviour. [4]
Another pattern of flagella adherence involves flagella emerging from flagellar folds, which are grooves that run parallel to the cell, and then attaching to each other. [3] [20] Another key component of a Trichonympha cell is the basal body and parabasal fibres. Trichonympha has long basal bodies which give rise to the flagella. [22]
Motility protein A (MotA), is a bacterial protein that is encoded by the motA gene.It is a component of the flagellar motor. [1] More specifically, MotA and MotB make the stator of a H + driven bacterial flagella and surround the rotor as a ring of about 8–10 particles.