Search results
Results from the WOW.Com Content Network
A practical motivation was given in the release notes for GEOTRANS, [4] Release 2.0.2, 1999: The MGRS module was changed to make the final latitude check on MGRS to UTM conversions sensitive to the precision of the input MGRS coordinate string. The lower the input precision, the more "slop" is allowed in the final check on the latitude zone letter.
The Universal Transverse Mercator (UTM) is a map projection system for assigning coordinates to locations on the surface of the Earth.Like the traditional method of latitude and longitude, it is a horizontal position representation, which means it ignores altitude and treats the earth surface as a perfect ellipsoid.
Like the UTM coordinate system, the UPS coordinate system uses a metric-based cartesian grid laid out on a conformally projected surface. UPS covers the Earth's polar regions, specifically the areas north of 84°N and south of 80°S, which are not covered by the UTM grids, plus an additional 30 minutes of latitude extending into UTM grid to ...
"Distortion of scale increases in each UTM zone as the boundaries between the longitude zones are approached." The distortion increases with the *metric* distance to the central meridian, thats why the west to east width of the UTM-Zones is limited to 800 km, btw. exactly 800 km, and that not because of the distortion but due to the concept ...
ITM is based on the Universal Transverse Mercator coordinate system (UTM), used to provide grid references for worldwide locations, and this is the system commonly used for the Channel Islands. European-wide agencies also use UTM when mapping locations, or may use the Military Grid Reference System (MGRS), or variants of it.
A projected coordinate system – also called a projected coordinate reference system, planar coordinate system, or grid reference system – is a type of spatial reference system that represents locations on Earth using Cartesian coordinates (x, y) on a planar surface created by a particular map projection. [1]
A coordinate system conversion is a conversion from one coordinate system to another, with both coordinate systems based on the same geodetic datum. Common conversion tasks include conversion between geodetic and earth-centered, earth-fixed coordinates and conversion from one type of map projection to another.
This is the most striking difference between the spherical and ellipsoidal versions of the transverse Mercator projection: Gauss–Krüger gives a reasonable projection of the whole ellipsoid to the plane, although its principal application is to accurate large-scale mapping "close" to the central meridian. [citation needed]