Search results
Results from the WOW.Com Content Network
When insulin binds to the insulin receptor, it leads to a cascade of cellular processes that promote the usage or, in some cases, the storage of glucose in the cell. The effects of insulin vary depending on the tissue involved, e.g., insulin is most important in the uptake of glucose by muscle and adipose tissue. [2]
One of the uses of NADPH in the cell is to prevent oxidative stress. It reduces glutathione via glutathione reductase, which converts reactive H 2 O 2 into H 2 O by glutathione peroxidase. If absent, the H 2 O 2 would be converted to hydroxyl free radicals by Fenton chemistry, which can attack the cell. Erythrocytes, for example, generate a ...
This hormone, insulin, causes the liver to convert more glucose into glycogen (this process is called glycogenesis), and to force about 2/3 of body cells (primarily muscle and fat tissue cells) to take up glucose from the blood through the GLUT4 transporter, thus decreasing blood sugar.
Insulin and glucagon are the primary hormones involved in maintaining a steady level of glucose in the blood, and the release of each is controlled by the amount of nutrients currently available. [17] The amount of insulin released in the blood and sensitivity of the cells to the insulin both determine the amount of glucose that cells break ...
Insulin (/ ˈ ɪ n. sj ʊ. l ɪ n /, [5] [6] from Latin insula, 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the insulin (INS) gene. It is the main anabolic hormone of the body. [ 7 ]
The anti-diabetic drug metformin reduces blood glucose primarily through inhibition of gluconeogenesis, overcoming the failure of insulin to inhibit gluconeogenesis due to insulin resistance. [32] Studies have shown that the absence of hepatic glucose production has no major effect on the control of fasting plasma glucose concentration.
Glycogenesis is the process of glycogen synthesis or the process of converting glucose into glycogen in which glucose molecules are added to chains of glycogen for storage. This process is activated during rest periods following the Cori cycle , in the liver , and also activated by insulin in response to high glucose levels .
This process is illustrated by the insulin receptor sites on target cells, e.g. liver cells, in a person with type 2 diabetes. [6] Due to the elevated levels of blood glucose in an individual, the β-cells (islets of Langerhans) in the pancreas must release more insulin than normal to meet the demand and return the blood to homeostatic levels. [7]