Search results
Results from the WOW.Com Content Network
In biology literature, the term topology is also used to refer to mutual orientation of regular secondary structures, such as alpha-helices and beta strands in protein structure [3]. For example, two adjacent interacting alpha-helices or beta-strands can go in the same or in opposite directions.
An example of distributed computing (Rosetta) in predicting the 3D structure of a protein from its amino-acid sequence. The predicted structure (magenta) of a protein is overlaid with the experimentally determined crystal structure (blue) of that protein. The agreement between the two is very good.
Folded, 3-D structure of ribonuclease A. Anfinsen's dogma, also known as the thermodynamic hypothesis, is a postulate in molecular biology.It states that, at least for a small globular protein in its standard physiological environment, the native structure is determined only by the protein's amino acid sequence. [1]
The generation of a protein sequence is much easier than the determination of a protein structure. However, the structure of a protein gives much more insight in the function of the protein than its sequence. Therefore, a number of methods for the computational prediction of protein structure from its sequence have been developed. [39]
The DALI method has also been used to construct a database known as FSSP (Fold classification based on Structure-Structure alignment of Proteins, or Families of Structurally Similar Proteins) in which all known protein structures are aligned with each other to determine their structural neighbors and fold classification.
In order to perform their functions, proteins often need to find a specific counterpart to which they will bind in a relatively long encounter. In a very crowded cytosol, in which proteins engage in a vast and complex network of attracting and repelling interactions, such search becomes challenging, because it involves sampling a huge space of ...
The presence of multiple domains in proteins gives rise to a great deal of flexibility and mobility, leading to protein domain dynamics. [1] Domain motions can be inferred by comparing different structures of a protein (as in Database of Molecular Motions ), or they can be directly observed using spectra [ 13 ] [ 2 ] measured by neutron spin ...
Numerous protein structures are the result of rational design and do not exist in nature. Proteins can be designed from scratch (de novo design) or by making calculated variations on a known protein structure and its sequence (known as protein redesign). Rational protein design approaches make protein-sequence predictions that will fold to ...