enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Clausius–Clapeyron relation - Wikipedia

    en.wikipedia.org/wiki/ClausiusClapeyron_relation

    The Clausius–Clapeyron equation [8]: 509 applies to vaporization of liquids where vapor follows ideal gas law using the ideal gas constant and liquid volume is neglected as being much smaller than vapor volume V. It is often used to calculate vapor pressure of a liquid. [9]

  3. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  4. Gas constant - Wikipedia

    en.wikipedia.org/wiki/Gas_constant

    The gas constant occurs in the ideal gas law: = = where P is the absolute pressure, V is the volume of gas, n is the amount of substance, m is the mass, and T is the thermodynamic temperature. R specific is the mass-specific gas constant. The gas constant is expressed in the same unit as molar heat.

  5. Ideal gas - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas

    R is the gas constant, which must be expressed in units consistent with those chosen for pressure, volume and temperature. For example, in SI units R = 8.3145 J⋅K −1 ⋅mol −1 when pressure is expressed in pascals, volume in cubic meters, and absolute temperature in kelvin. The ideal gas law is an extension of experimentally discovered ...

  6. Thermal equation of state of solids - Wikipedia

    en.wikipedia.org/wiki/Thermal_equation_of_state...

    In physics, the thermal equation of state is a mathematical expression of pressure P, temperature T, and, volume V.The thermal equation of state for ideal gases is the ideal gas law, expressed as PV=nRT (where R is the gas constant and n the amount of substance), while the thermal equation of state for solids is expressed as:

  7. Specific volume - Wikipedia

    en.wikipedia.org/wiki/Specific_volume

    If one sets out to determine the specific volume of an ideal gas, such as super heated steam, using the equation ν = RT/P, where pressure is 2500 lbf/in 2, R is 0.596, temperature is 1960 °R. In that case, the specific volume would equal 0.4672 in 3 /lb.

  8. Equation of state - Wikipedia

    en.wikipedia.org/wiki/Equation_of_state

    In 1834, Émile Clapeyron combined Boyle's law and Charles' law into the first statement of the ideal gas law. Initially, the law was formulated as pV m = R(T C + 267) (with temperature expressed in degrees Celsius), where R is the gas constant.

  9. Kinetic theory of gases - Wikipedia

    en.wikipedia.org/wiki/Kinetic_theory_of_gases

    Therefore, the kinetic energy per kelvin of one mole of monatomic ideal gas (D = 3) is = =, where is the Avogadro constant, and R is the ideal gas constant. Thus, the ratio of the kinetic energy to the absolute temperature of an ideal monatomic gas can be calculated easily: