Search results
Results from the WOW.Com Content Network
At a low speed (v ≪ c), the relativistic kinetic energy is approximated well by the classical kinetic energy. To see this, apply the binomial approximation or take the first two terms of the Taylor expansion in powers of v 2 {\displaystyle v^{2}} for the reciprocal square root: [ 14 ] : 51
Its initial value is 1 (when v = 0); and as velocity approaches the speed of light (v → c) γ increases without bound (γ → ∞). α (Lorentz factor inverse) as a function of velocity—a circular arc. In the table below, the left-hand column shows speeds as different fractions of the speed of light (i.e. in units of c). The middle column ...
Shockley derives an equation for the voltage across a p-n junction in a long article published in 1949. [2] Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3]
Looking at the above formula for invariant mass of a system, one sees that, when a single massive object is at rest (v = 0, p = 0), there is a non-zero mass remaining: m 0 = E/c 2. The corresponding energy, which is also the total energy when a single particle is at rest, is referred to as "rest energy".
In classical mechanics, both the m 0 c 2 term and the high-speed corrections are ignored. The initial value of the energy is arbitrary, as only the change in energy can be measured and so the m 0 c 2 term is ignored in classical physics. While the higher-order terms become important at higher speeds, the Newtonian equation is a highly accurate ...
where the factor of 2 arises because the metric is a symmetric tensor, and the convention of Latin indices i, j taking space-like values 1, 2, 3 is used. As each component of the metric has space and time dependence in general; this is significantly more complicated than the formula quoted at the beginning, see metric tensor (general relativity ...
In quantum mechanics, the particle in a one-dimensional lattice is a problem that occurs in the model of a periodic crystal lattice.The potential is caused by ions in the periodic structure of the crystal creating an electromagnetic field so electrons are subject to a regular potential inside the lattice.
An electronvolt is the amount of energy gained or lost by a single electron when it moves through an electric potential difference of one volt.Hence, it has a value of one volt, which is 1 J/C, multiplied by the elementary charge e = 1.602 176 634 × 10 −19 C. [2]