Search results
Results from the WOW.Com Content Network
The measurement of an exponential bacterial growth curve in batch culture was traditionally a part of the training of all microbiologists; the basic means requires bacterial enumeration (cell counting) by direct and individual (microscopic, flow cytometry [1]), direct and bulk (biomass), indirect and individual (colony counting), or indirect ...
When an empirical equation of this form is applied to microbial growth, it is sometimes called a Monod equation. Michaelis–Menten kinetics have also been applied to a variety of topics outside of biochemical reactions, [ 14 ] including alveolar clearance of dusts, [ 19 ] the richness of species pools, [ 20 ] clearance of blood alcohol , [ 21 ...
Figure 1: A bi-phasic bacterial growth curve.. A growth curve is an empirical model of the evolution of a quantity over time. Growth curves are widely used in biology for quantities such as population size or biomass (in population ecology and demography, for population growth analysis), individual body height or biomass (in physiology, for growth analysis of individuals).
Incubation follows a growth curve variable for every microorganism. Cultures follow a lag, log, stationary, and finally death phase. [6] The lag phase is not well known in microbiology, but it is speculated that this phase consists of the microorganism adjusting to its environment by synthesizing proteins specific for the surrounding habitat. [6]
Microbiology (from Ancient Greek μῑκρος (mīkros) 'small' βίος (bíos) 'life' and -λογία () 'study of') is the scientific study of microorganisms, those being of unicellular (single-celled), multicellular (consisting of complex cells), or acellular (lacking cells).
Biological exponential growth is the unrestricted growth of a population of organisms, occurring when resources in its habitat are unlimited. [1] Most commonly apparent in species that reproduce quickly and asexually , like bacteria , exponential growth is intuitive from the fact that each organism can divide and produce two copies of itself.
This would kill off most bacteria, but leave some alive. We can then smear the growth medium over a new growth medium, and count the number of colonies as the number of survivors. In the Lamarckian scenario, each bacterium faces the challenge alone. Most would perish, but a few would survive the ordeal and found a new colony.
A diauxic growth curve refers to the growth curve generated by an organism which has two growth peaks. The theory behind the diauxic growth curve stems from Jacques Monod's Ph.D. research in 1940. A simple example involves the bacterium Escherichia coli ( E. coli ), the best understood bacterium.