Search results
Results from the WOW.Com Content Network
Dwarf planets are bodies orbiting the Sun that are massive and warm enough to have achieved hydrostatic equilibrium, but have not cleared their neighbourhoods of similar objects. Since 2008, there have been five dwarf planets recognized by the IAU, although only Pluto has actually been confirmed to be in hydrostatic equilibrium [ 25 ] (Ceres is ...
The bow shock forms the outermost layer of the magnetosphere; the boundary between the magnetosphere and the ambient medium. For stars, this is usually the boundary between the stellar wind and interstellar medium; for planets, the speed of the solar wind there decreases as it approaches the magnetopause. [6]
The magnetosphere of Saturn is the cavity created in the flow of the solar wind by the planet's internally generated magnetic field. Discovered in 1979 by the Pioneer 11 spacecraft, Saturn's magnetosphere is the second largest of any planet in the Solar System after Jupiter .
A magnetosphere is a region of space surrounding a planet where the planet's magnetic field dominates, creating a protective zone against solar and cosmic particle radiation.
The Sun and planets of the Solar System (distances not to scale). The Solar System is the gravitationally bound system of the Sun and the objects that orbit it. It formed about 4.6 billion years ago when a dense region of a molecular cloud collapsed, forming the Sun and a protoplanetary disc.
Many TNOs are often just assumed to have Pluto's density of 2.0 g/cm 3, but it is just as likely that they have a comet-like density of only 0.5 g/cm 3. [ 4 ] For example, if a TNO is incorrectly assumed to have a mass of 3.59 × 10 20 kg based on a radius of 350 km with a density of 2 g/cm 3 but is later discovered to have a radius of only 175 ...
An image of the planet Uranus taken by the NASA spacecraft Voyager 2 in 1986. New research using data from the mission shows a solar wind event took place during the flyby, leading to a mystery ...
Mercury's magnetic field is approximately a magnetic dipole, apparently global, [8] on the planet of Mercury. [9] Data from Mariner 10 led to its discovery in 1974; the spacecraft measured the field's strength as 1.1% that of Earth's magnetic field. [10] The origin of the magnetic field can be explained by dynamo theory. [11]