Search results
Results from the WOW.Com Content Network
This is a list of limits for common functions such as elementary functions. In this article, the terms a , b and c are constants with respect to x . Limits for general functions
On one hand, the limit as n approaches infinity of a sequence {a n} is simply the limit at infinity of a function a(n) —defined on the natural numbers {n}. On the other hand, if X is the domain of a function f ( x ) and if the limit as n approaches infinity of f ( x n ) is L for every arbitrary sequence of points { x n } in X − x 0 which ...
In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.
There are three basic rules for evaluating limits at infinity for a rational function = () (where p and q are polynomials): If the degree of p is greater than the degree of q, then the limit is positive or negative infinity depending on the signs of the leading coefficients;
In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series. Statement [ edit ]
The general form of L'Hôpital's rule covers many cases. Let c and L be extended real numbers: real numbers, positive or negative infinity. Let I be an open interval containing c (for a two-sided limit) or an open interval with endpoint c (for a one-sided limit, or a limit at infinity if c is infinite).
In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...
In mathematics, the nth-term test for divergence [1] is a simple test for the divergence of an infinite series:. If or if the limit does not exist, then = diverges.. Many authors do not name this test or give it a shorter name.