Search results
Results from the WOW.Com Content Network
A scale factor of 1 ⁄ 10 cannot be used here, because scaling 160 by 1 ⁄ 10 gives 16, which is greater than the greatest value that can be stored in this fixed-point format. However, 1 ⁄ 11 will work as a scale factor, because the maximum scaled value, 160 ⁄ 11 = 14. 54, fits within this range. Given this set:
The VisSim company used fx m. b to denote a binary fixed-point value with b total bits and m bits in the integer part; that is, a b-bit integer with scaling factor 1/2 b−m. Thus fx1.16 would mean a 16-bit number with 1 bit in the integer part and 15 in the fraction. [13] The PS2 GS ("Graphics Synthesizer") User's Guide uses the notation s: m ...
For example, the specification Q3.12 describes a signed binary fixed-point number with a w = 16 bits in total, comprising the sign bit, three bits for the integer part, and 12 bits that are the fraction. That is, a 16-bit signed (two's complement) integer, that is implicitly multiplied by the scaling factor 2 −12. In particular, when n is ...
The number of bits needed for the precision and range desired must be chosen to store the fractional and integer parts of a number. For instance, using a 32-bit format, 16 bits may be used for the integer and 16 for the fraction. The eight's bit is followed by the four's bit, then the two's bit, then the one's bit.
Mesh data is usually stored using 32-bit single-precision floats for the vertices, however in some situations it is acceptable to reduce the precision to only 16-bit half-precision, requiring only half the storage at the expense of some precision. Mesh quantization can also be done with 8-bit or 16-bit fixed precision depending on the requirements.
Examples of equally spaced values are 10, 100, 1000, 10000, and 100000 (i.e., 10 1, 10 2, 10 3, 10 4, 10 5) and 2, 4, 8, 16, and 32 (i.e., 2 1, 2 2, 2 3, 2 4, 2 5). Exponential growth curves are often depicted on a logarithmic scale graph. A logarithmic scale from 0.1 to 100 The two logarithmic scales of a slide rule
Current Windows versions and all back to Windows XP and prior Windows NT (3.x, 4.0) are shipped with system libraries that support string encoding of two types: 16-bit "Unicode" (UTF-16 since Windows 2000) and a (sometimes multibyte) encoding called the "code page" (or incorrectly referred to as ANSI code page). 16-bit functions have names suffixed with 'W' (from "wide") such as SetWindowTextW.
Amicable numbers are two different natural numbers related in such a way that the sum of the proper divisors of each is equal to the other number. That is, s ( a )= b and s ( b )= a , where s ( n )=σ( n )- n is equal to the sum of positive divisors of n except n itself (see also divisor function ).