enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    For most practical purposes, the volume inside a sphere inscribed in a cube can be approximated as 52.4% of the volume of the cube, since V = ⁠ π / 6 ⁠ d 3, where d is the diameter of the sphere and also the length of a side of the cube and ⁠ π / 6 ⁠ ≈ 0.5236.

  3. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    Given a unit sphere, a "spherical triangle" on the surface of the sphere is defined by the great circles connecting three points u, v, and w on the sphere (shown at right). If the lengths of these three sides are a (from u to v ), b (from u to w ), and c (from v to w ), and the angle of the corner opposite c is C , then the (first) spherical ...

  4. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),

  5. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    The sphere's radius is taken as unity. For specific practical problems on a sphere of radius R the measured lengths of the sides must be divided by R before using the identities given below. Likewise, after a calculation on the unit sphere the sides a, b, and c must be multiplied by R.

  6. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    where H is the hypervolume of a 3-sphere and r is the radius. S V = 2 π 2 r 3 {\displaystyle SV=2\pi ^{2}r^{3}} where SV is the surface volume of a 3-sphere and r is the radius.

  7. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    Great circles in many ways play the same logical role in spherical geometry as lines in Euclidean geometry, e.g., as the sides of (spherical) triangles. This is more than an analogy; spherical and plane geometry and others can all be unified under the umbrella of geometry built from distance measurement , where "lines" are defined to mean ...

  8. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    As can be seen, the area of the circle defined by the intersection with the sphere of a horizontal plane located at any height equals the area of the intersection of that plane with the part of the cylinder that is "outside" of the cone; thus, applying Cavalieri's principle, it could be said that the volume of the half sphere equals the volume ...

  9. Equivalent radius - Wikipedia

    en.wikipedia.org/wiki/Equivalent_radius

    Given the volume of a non-spherical object V, one can calculate its volume-equivalent radius by setting = or, alternatively: = For example, a cube of side length L has a volume of . Setting that volume to be equal that of a sphere imply that