Ads
related to: hooke's theory of light and sound energy video for kids grade 2 mathematicsgenerationgenius.com has been visited by 100K+ users in the past month
- Grades 6-8 Science Videos
Get instant access to hours of fun
standards-based 6-8 videos & more.
- Loved by Teachers
Check out some of the great
feedback from teachers & parents.
- DIY Science Activities
Do-It-Yourself activities for kids.
Using common classroom materials.
- K-8 Standards Alignment
Videos & lessons cover most
of the standards for every state
- Grades 6-8 Science Videos
Search results
Results from the WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
YouTube video. Physics - Newton's corpuscular theory of light - Science. elearnin. Uploaded 5 Jan 2013. Robert Hooke's Critique of Newton's Theory of Light and Colors (delivered 1672) Robert Hooke. Thomas Birch, The History of the Royal Society, vol. 3 (London: 1757), pp. 10–15. Newton Project, University of Sussex. Corpuscule or Wave. Arman ...
[13] [14] Investigating optics – specifically light refraction – Hooke inferred a wave theory of light. [15] His is the first-recorded hypothesis of the cause of the expansion of matter by heat, [ 16 ] of air's composition by small particles in constant motion that thus generate its pressure, [ 17 ] and of heat as energy.
[2] Another physical setting for derivation of the wave equation in one space dimension uses Hooke's law. In the theory of elasticity, Hooke's law is an approximation for certain materials, stating that the amount by which a material body is deformed (the strain) is linearly related to the force causing the deformation (the stress).
where c is the speed of light, and Δr and Δt denote differences of the space and time coordinates, respectively, between the events. The choice of signs for s 2 above follows the space-like convention (−+++). A notation like Δr 2 means (Δr) 2. The reason s 2 is called the interval and not s is that s 2 can be positive, zero or negative.
In physics, sound energy is a form of energy that can be heard by living things. Only those waves that have a frequency of 16 Hz to 20 kHz are audible to humans. However, this range is an average and will slightly change from individual to individual.
S represents the light source, while r represents the measured points. The lines represent the flux emanating from the sources and fluxes. The total number of flux lines depends on the strength of the light source and is constant with increasing distance, where a greater density of flux lines (lines per unit area) means a stronger energy field.
m s −2 [L][T] −2: Spatial position Position of a point in space, not necessarily a point on the wave profile or any line of propagation d, r: m [L] Wave profile displacement Along propagation direction, distance travelled (path length) by one wave from the source point r 0 to any point in space d (for longitudinal or transverse waves) L, d, r
Ads
related to: hooke's theory of light and sound energy video for kids grade 2 mathematicsgenerationgenius.com has been visited by 100K+ users in the past month