enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Retarded potential - Wikipedia

    en.wikipedia.org/wiki/Retarded_potential

    Position vectors r and r′ used in the calculation. The starting point is Maxwell's equations in the potential formulation using the Lorenz gauge: =, = where φ(r, t) is the electric potential and A(r, t) is the magnetic vector potential, for an arbitrary source of charge density ρ(r, t) and current density J(r, t), and is the D'Alembert operator. [2]

  3. Quantum potential - Wikipedia

    en.wikipedia.org/wiki/Quantum_potential

    The quantum potential or quantum potentiality is a central concept of the de Broglie–Bohm formulation of quantum mechanics, introduced by David Bohm in 1952.. Initially presented under the name quantum-mechanical potential, subsequently quantum potential, it was later elaborated upon by Bohm and Basil Hiley in its interpretation as an information potential which acts on a quantum particle.

  4. Yukawa potential - Wikipedia

    en.wikipedia.org/wiki/Yukawa_potential

    Figure 1: A comparison of Yukawa potentials where = and with various values for m. Figure 2: A "long-range" comparison of Yukawa and Coulomb potentials' strengths where =. If the particle has no mass (i.e., m = 0), then the Yukawa potential reduces to a Coulomb potential, and the range is said to be infinite.

  5. Particle in a one-dimensional lattice - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_one...

    Assuming the spacing between two ions is a, the potential in the lattice will look something like this: The mathematical representation of the potential is a periodic function with a period a. According to Bloch's theorem, [1] the wavefunction solution of the Schrödinger equation when the potential is periodic, can be written as:

  6. List of quantum-mechanical systems with analytical solutions

    en.wikipedia.org/wiki/List_of_quantum-mechanical...

    The rectangular potential barrier; The triangular potential; The quadratic potentials The quantum harmonic oscillator; The quantum harmonic oscillator with an applied uniform field [1] The Inverse square root potential [2] The periodic potential The particle in a lattice; The particle in a lattice of finite length [3] The Pöschl–Teller potential

  7. Particle in a spherically symmetric potential - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_spherically...

    A potential with such a finite discontinuity is called a square potential. [3] We first consider bound states, i.e. states which display the particle mostly inside the box (confined states). Those have an energy less than the potential outside the sphere, i.e., they have negative energy. Also worth noticing is that unlike Coulomb potential ...

  8. Classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism

    Examples of the dynamic fields of electromagnetic radiation (in order of increasing frequency): radio waves, microwaves, light (infrared, visible light and ultraviolet), x-rays and gamma rays. In the field of particle physics this electromagnetic radiation is the manifestation of the electromagnetic interaction between charged particles.

  9. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of ...