Search results
Results from the WOW.Com Content Network
Position vectors r and r′ used in the calculation. The starting point is Maxwell's equations in the potential formulation using the Lorenz gauge: =, = where φ(r, t) is the electric potential and A(r, t) is the magnetic vector potential, for an arbitrary source of charge density ρ(r, t) and current density J(r, t), and is the D'Alembert operator. [2]
The graph of a 2D potential energy function is a potential energy surface that can be imagined as the Earth's surface in a landscape of hills and valleys. Then a potential well would be a valley surrounded on all sides with higher terrain, which thus could be filled with water (e.g., be a lake ) without any water flowing away toward another ...
The rectangular potential barrier; The triangular potential; The quadratic potentials The quantum harmonic oscillator; The quantum harmonic oscillator with an applied uniform field [1] The Inverse square root potential [2] The periodic potential The particle in a lattice; The particle in a lattice of finite length [3] The Pöschl–Teller potential
Assuming the spacing between two ions is a, the potential in the lattice will look something like this: The mathematical representation of the potential is a periodic function with a period a. According to Bloch's theorem, [1] the wavefunction solution of the Schrödinger equation when the potential is periodic, can be written as:
The quantum potential or quantum potentiality is a central concept of the de Broglie–Bohm formulation of quantum mechanics, introduced by David Bohm in 1952.. Initially presented under the name quantum-mechanical potential, subsequently quantum potential, it was later elaborated upon by Bohm and Basil Hiley in its interpretation as an information potential which acts on a quantum particle.
[Note 1] The original two-variable problem has been reduced to a one-variable problem. For many applications the effective potential can be treated exactly like the potential energy of a one-dimensional system: for instance, an energy diagram using the effective potential determines turning points and locations of stable and unstable equilibria.
Source: [1] The potential splits the space in two parts (x < 0 and x > 0).In each of these parts the potential is zero, and the Schrödinger equation reduces to =; this is a linear differential equation with constant coefficients, whose solutions are linear combinations of e ikx and e −ikx, where the wave number k is related to the energy by =.
The work of forces generated by a potential function is known as potential energy and the forces are said to be conservative. Therefore, work on an object that is merely displaced in a conservative force field , without change in velocity or rotation, is equal to minus the change of potential energy E p of the object, W = − Δ E p ...