Ads
related to: how to find radius of a curve formula given a line geometry and planeeducation.com has been visited by 100K+ users in the past month
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Guided Lessons
Learn new concepts step-by-step
with colorful guided lessons.
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Lesson Plans
Search results
Results from the WOW.Com Content Network
Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...
Historically, the curvature of a differentiable curve was defined through the osculating circle, which is the circle that best approximates the curve at a point. More precisely, given a point P on a curve, every other point Q of the curve defines a circle (or sometimes a line) passing through Q and tangent to the curve at P.
More formally, in differential geometry of curves, the osculating circle of a sufficiently smooth plane curve at a given point p on the curve has been traditionally defined as the circle passing through p and a pair of additional points on the curve infinitesimally close to p.
When a line of curvature has a local extremum of the same principal curvature then the curve has a ridge point. These ridge points form curves on the surface called ridges. The ridge curves pass through the umbilics. For the star pattern either 3 or 1 ridge line pass through the umbilic, for the monstar and lemon only one ridge passes through. [3]
As for parallel lines, a normal line to a curve is also normal to its parallels. When parallel curves are constructed they will have cusps when the distance from the curve matches the radius of curvature. These are the points where the curve touches the evolute.
In Euclidean plane geometry, a tangent line to a circle is a line that touches the circle at exactly one point, never entering the circle's interior. Tangent lines to circles form the subject of several theorems , and play an important role in many geometrical constructions and proofs .
A space curve; the vectors T, N, B; and the osculating plane spanned by T and N. In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space, or the geometric properties of the curve itself irrespective of any motion.
If a curve γ represents the path of a particle, then the instantaneous velocity of the particle at a given point P is expressed by a vector, called the tangent vector to the curve at P. Mathematically, given a parametrized C 1 curve γ = γ(t), for every value t = t 0 of the parameter, the vector ′ = | = is the tangent vector at the point P ...
Ads
related to: how to find radius of a curve formula given a line geometry and planeeducation.com has been visited by 100K+ users in the past month