enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    Many iterative square root algorithms require an initial seed value. The seed must be a non-zero positive number; it should be between 1 and , the number whose square root is desired, because the square root must be in that range. If the seed is far away from the root, the algorithm will require more iterations.

  3. Integer square root - Wikipedia

    en.wikipedia.org/wiki/Integer_square_root

    For example, if one computes the integer square root of 2000000 using the algorithm above, one obtains the sequence In total 13 iteration steps are needed. Although Heron's method converges quadratically close to the solution, less than one bit precision per iteration is gained at the beginning.

  4. Fast inverse square root - Wikipedia

    en.wikipedia.org/wiki/Fast_inverse_square_root

    Fast inverse square root, sometimes referred to as Fast InvSqrt () or by the hexadecimal constant 0x5F3759DF, is an algorithm that estimates , the reciprocal (or multiplicative inverse) of the square root of a 32-bit floating-point number in IEEE 754 floating-point format. The algorithm is best known for its implementation in 1999 in Quake III ...

  5. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    Newton's method is one of many known methods of computing square roots. Given a positive number a, the problem of finding a number x such that x2 = a is equivalent to finding a root of the function f(x) = x2 − a. The Newton iteration defined by this function is given by.

  6. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    An nth root of a number x, where n is a positive integer, is any of the n real or complex numbers r whose n th power is x: Every positive real number x has a single positive n th root, called the principal n th root, which is written . For n equal to 2 this is called the principal square root and the n is omitted.

  7. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    Sieve of Eratosthenes: algorithm steps for primes below 121 (including optimization of starting from prime's square). In mathematics, the sieve of Eratosthenesis an ancient algorithmfor finding all prime numbersup to any given limit. It does so by iteratively marking as composite(i.e., not prime) the multiples of each prime, starting with the ...

  8. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division: checking if the number is divisible by prime numbers 2, 3, 5, and so on, up to the square root of n. For larger numbers, especially when using a computer, various more sophisticated factorization algorithms are more efficient.

  9. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    Primality test. Appearance. A primality test is an algorithm for determining whether an input number is prime. Among other fields of mathematics, it is used for cryptography. Unlike integer factorization, primality tests do not generally give prime factors, only stating whether the input number is prime or not.