enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zeno's paradoxes - Wikipedia

    en.wikipedia.org/wiki/Zeno's_paradoxes

    The Mohist canon appears to propose a solution to this paradox by arguing that in moving across a measured length, the distance is not covered in successive fractions of the length, but in one stage. Due to the lack of surviving works from the School of Names, most of the other paradoxes listed are difficult to interpret. [56]

  3. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    The force is proportional to the product of the two masses and inversely proportional to the square of the distance between them: [10] Diagram of two masses attracting one another = where F is the force between the masses; G is the Newtonian constant of gravitation (6.674 × 10 −11 m 3 ⋅kg −1 ⋅s −2);

  4. Coastline paradox - Wikipedia

    en.wikipedia.org/wiki/Coastline_paradox

    In Euclidean geometry, a straight line represents the shortest distance between two points. This line has only one length. On the surface of a sphere, this is replaced by the geodesic length (also called the great circle length), which is measured along the surface curve that exists in the plane containing both endpoints and the center of the ...

  5. Comoving and proper distances - Wikipedia

    en.wikipedia.org/wiki/Comoving_and_proper_distances

    Proper distance is also equal to the locally measured distance in the comoving frame for nearby objects. To measure the proper distance between two distant objects, one imagines that one has many comoving observers in a straight line between the two objects, so that all of the observers are close to each other, and form a chain between the two ...

  6. Length contraction - Wikipedia

    en.wikipedia.org/wiki/Length_contraction

    This could suggest that if one could take a picture of a fast moving object, that the image would show the object contracted in the direction of motion. However, such visual effects are completely different measurements, as such a photograph is taken from a distance, while length contraction can only directly be measured at the exact location ...

  7. Distance - Wikipedia

    en.wikipedia.org/wiki/Distance

    The Euclidean distance is the length of the displacement vector. The displacement in classical physics measures the change in position of an object during an interval of time. While distance is a scalar quantity, or a magnitude, displacement is a vector quantity with both magnitude and direction. In general, the vector measuring the difference ...

  8. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    v. t. e. The two-body problem in general relativity (or relativistic two-body problem) is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun.

  9. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The change of motion of an object is proportional to the force impressed; and is made in the direction of the straight line in which the force is impressed. [ 14 ] : 114 By "motion", Newton meant the quantity now called momentum , which depends upon the amount of matter contained in a body, the speed at which that body is moving, and the ...