enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. High resolution electron energy loss spectroscopy - Wikipedia

    en.wikipedia.org/wiki/High_resolution_electron...

    The energies of the scattered electrons (E s) are measured and the energy loss can be calculated. From the measured data an intensity versus energy loss diagram is established. In the case of scattering by phonons the so-called energy loss can also be a gain of energy (similar to anti-Stokes Raman spectroscopy). These energy losses allow, using ...

  3. Electron energy loss spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Electron_energy_loss...

    Electron energy loss spectroscopy (EELS) is a form of electron microscopy in which a material is exposed to a beam of electrons with a known, narrow range of kinetic energies. Some of the electrons will undergo inelastic scattering, which means that they lose energy and have their paths slightly and randomly deflected. The amount of energy loss ...

  4. Bulgars - Wikipedia

    en.wikipedia.org/wiki/Bulgars

    The Bulgars, at least the Danubian Bulgars, had a well-developed clan and military administrative system of "inner" and "outer" tribes, [109] governed by the ruling clan. [110] They had many titles, and according to Steven Runciman the distinction between titles which represented offices and mere ornamental dignities was somewhat vague. [ 111 ]

  5. Förster resonance energy transfer - Wikipedia

    en.wikipedia.org/wiki/Förster_resonance_energy...

    [10] [11] In order to avoid an erroneous interpretation of the phenomenon that is always a nonradiative transfer of energy (even when occurring between two fluorescent chromophores), the name "Förster resonance energy transfer" is preferred to "fluorescence resonance energy transfer"; however, the latter enjoys common usage in scientific ...

  6. Heat transfer physics - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_physics

    The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...

  7. Energy conversion efficiency - Wikipedia

    en.wikipedia.org/wiki/Energy_conversion_efficiency

    Energy conversion efficiency depends on the usefulness of the output. All or part of the heat produced from burning a fuel may become rejected waste heat if, for example, work is the desired output from a thermodynamic cycle. Energy converter is an example of an energy transformation.

  8. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    The first law of thermodynamics is a formulation of the law of conservation of energy in the context of thermodynamic processes.The law distinguishes two principal forms of energy transfer, heat and thermodynamic work, that modify a thermodynamic system containing a constant amount of matter.

  9. Bond-dissociation energy - Wikipedia

    en.wikipedia.org/wiki/Bond-dissociation_energy

    The term bond-dissociation energy is similar to the related notion of bond-dissociation enthalpy (or bond enthalpy), which is sometimes used interchangeably.However, some authors make the distinction that the bond-dissociation energy (D 0) refers to the enthalpy change at 0 K, while the term bond-dissociation enthalpy is used for the enthalpy change at 298 K (unambiguously denoted DH° 298).