enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    Escape speed at a distance d from the center of a spherically symmetric primary body (such as a star or a planet) with mass M is given by the formula [2] [3] = = where: G is the universal gravitational constant (G ≈ 6.67 × 10 −11 m 3 ⋅kg −1 ⋅s −2 ‍ [4])

  3. Characteristic energy - Wikipedia

    en.wikipedia.org/wiki/Characteristic_energy

    In the second edition (1914) of this book, Moulton solves the problem of the motion of two bodies under an attractive gravitational force in chapter 5. After reducing the problem to the relative motion of the bodies in the plane, he defines the constant of the motion c 3 by the equation ẋ 2 + ẏ 2 = 2k 2 M/r + c 3,

  4. Oberth effect - Wikipedia

    en.wikipedia.org/wiki/Oberth_effect

    The thrust produced by a rocket engine is independent of the rocket’s velocity relative to the surrounding atmosphere. A rocket acting on a fixed object, as in a static firing, does no useful work on the rocket; the rocket's chemical energy is progressively converted to kinetic energy of the exhaust, plus heat.

  5. Atmospheric escape - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_escape

    One classical thermal escape mechanism is Jeans escape, [1] named after British astronomer Sir James Jeans, who first described this process of atmospheric loss. [2] In a quantity of gas, the average velocity of any one molecule is measured by the gas's temperature, but the velocities of individual molecules change as they collide with one another, gaining and losing kinetic energy.

  6. Specific orbital energy - Wikipedia

    en.wikipedia.org/wiki/Specific_orbital_energy

    Thus the hyperbolic excess velocity (the theoretical orbital velocity at infinity) is given by = / However, Voyager 1 does not have enough velocity to leave the Milky Way. The computed speed applies far away from the Sun, but at such a position that the potential energy with respect to the Milky Way as a whole has changed negligibly, and only ...

  7. Parabolic trajectory - Wikipedia

    en.wikipedia.org/wiki/Parabolic_trajectory

    At any time the average speed from = is 1.5 times the current speed, i.e. 1.5 times the local escape velocity. To have t = 0 {\displaystyle t=0\!\,} at the surface, apply a time shift; for the Earth (and any other spherically symmetric body with the same average density) as central body this time shift is 6 minutes and 20 seconds; seven of ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Vis-viva equation - Wikipedia

    en.wikipedia.org/wiki/Vis-viva_equation

    In astrodynamics, the vis-viva equation is one of the equations that model the motion of orbiting bodies.It is the direct result of the principle of conservation of mechanical energy which applies when the only force acting on an object is its own weight which is the gravitational force determined by the product of the mass of the object and the strength of the surrounding gravitational field.