Search results
Results from the WOW.Com Content Network
In applied mathematical analysis, "piecewise-regular" functions have been found to be consistent with many models of the human visual system, where images are perceived at a first stage as consisting of smooth regions separated by edges (as in a cartoon); [9] a cartoon-like function is a C 2 function, smooth except for the existence of ...
A function property holds piecewise for a function, if the function can be piecewise-defined in a way that the property holds for every subdomain. Examples of functions with such piecewise properties are: Piecewise constant function, also known as a step function; Piecewise linear function; Piecewise continuous function
A piecewise linear function is a function defined on a (possibly unbounded) interval of real numbers, such that there is a collection of intervals on each of which the function is an affine function. (Thus "piecewise linear" is actually defined to mean "piecewise affine".)
Piecewise linear function, a function whose domain can be decomposed into pieces on which the function is linear; Piecewise linear manifold, a topological space formed by gluing together flat spaces; Piecewise linear homeomorphism, a topological equivalence between two piecewise linear manifolds; Piecewise linear cobordism, a cohomology theory
In mathematics, a function on the real numbers is called a step function if it can be written as a finite linear combination of indicator functions of intervals. Informally speaking, a step function is a piecewise constant function having only finitely many pieces. An example of step functions (the red graph).
Simple functions that lie directly underneath a given function f can be constructed by partitioning the range of f into a finite number of layers. The intersection of the graph of f with a layer identifies a set of intervals in the domain of f , which, taken together, is defined to be the preimage of the lower bound of that layer, under the ...
A valuation V is called piecewise-constant, if the corresponding value-density function v is a piecewise-constant function. In other words: there is a partition of the resource C into finitely many regions, C 1 ,..., C k , such that for each j in 1,..., k , the function v inside C j equals some constant U j .
The lemma is implicit in the use of piecewise functions. For example, in the book Topology and Groupoids , where the condition given for the statement below is that A ∖ B ⊆ Int A {\displaystyle A\setminus B\subseteq \operatorname {Int} A} and B ∖ A ⊆ Int B . {\displaystyle B\setminus A\subseteq \operatorname {Int} B.}