Search results
Results from the WOW.Com Content Network
An inrush current limiter is a device or devices combination used to limit inrush current. Passive resistive components such as resistors (with power dissipation drawback), or negative temperature coefficient (NTC) thermistors are simple options while the positive one (PTC) is used to limit max current afterward as the circuit has been operating (with cool-down time drawback on both).
NTC thermistors can be used as inrush-current limiting devices in power supply circuits when added in series with the circuit being protected. They present a higher resistance initially, which prevents large currents from flowing at turn-on. As current continues to flow, NTC thermistors heat up, allowing higher current flow during normal operation.
Current limiting reactor. The main motive of using current limiting reactors is to reduce short-circuit currents so that circuit breakers with lower short circuit breaking capacity can be used. They can also be used to protect other system components from high current levels and to limit the inrush current when starting a large motor. [5]
Inrush current, input surge current, or switch-on surge is the maximal instantaneous input current drawn by an electrical device when first turned on. Alternating-current electric motors and transformers may draw several times their normal full-load current when first energized, for a few cycles of the input waveform.
The simplest inrush-current limiting system, used in many consumer electronics devices, is a NTC resistor. When cold, its high resistance allows a small current to pre-charge the reservoir capacitor. After it warms up, its low resistance more efficiently passes the working current. Many active power factor correction systems also include soft ...
An NTC is commonly used as a temperature sensor, or in series with a circuit as an inrush current limiter. With PTC thermistors, resistance increases as temperature rises; usually because of increased thermal lattice agitations, particularly those of impurities and imperfections.
In electronics, a choke is an inductor used to block higher-frequency alternating currents (AC) while passing direct current (DC) and lower-frequency ACs in a circuit. A choke usually consists of a coil of insulated wire often wound on a magnetic core , although some consist of a doughnut-shaped ferrite bead strung on a wire.
Possible causes for overcurrent include short circuits, excessive load, incorrect design, an arc fault, or a ground fault. Fuses, circuit breakers, and current limiters are commonly used overcurrent protection (OCP) mechanisms to control the risks. Circuit breakers, relays, and fuses protect circuit wiring from damage caused by overcurrent. [1]