Search results
Results from the WOW.Com Content Network
Cell-based models are mathematical models that represent biological cells as discrete entities. Within the field of computational biology they are often simply called agent-based models [1] of which they are a specific application and they are used for simulating the biomechanics of multicellular structures such as tissues. to study the influence of these behaviors on how tissues are organised ...
Fluid mosaic model of a cell membrane. The fluid mosaic model explains various characteristics regarding the structure of functional cell membranes.According to this biological model, there is a lipid bilayer (two molecules thick layer consisting primarily of amphipathic phospholipids) in which protein molecules are embedded.
It eliminated the need to accommodate membrane proteins in thin surface layers, proposed that the variability in the protein/lipid ratios of different membranes simply means that different membranes vary in the amount of protein they contain, and showed how the exposure of lipid-head groups at the membrane surface is compatible with their ...
The movement of phospholipids, even those located in the outer leaflet of the membrane, is regulated by the actin-based membrane skeleton meshwork.Which is surprising, because the membrane skeleton is located on the cytoplasmic surface of the plasma membrane, and cannot directly interact with the phospholipids located in the outer leaflet of the plasma membrane.
Basic components of Hodgkin–Huxley-type models which represent the biophysical characteristic of cell membranes. The lipid bilayer is represented as a capacitance (C m). Voltage-gated and leak ion channels are represented by nonlinear (g n) and linear (g L) conductances, respectively.
The segment between nodes of Ranvier is termed as the internode, and its outermost part that is in contact with paranodes is referred to as the juxtaparanodal region. The nodes are encapsulated by microvilli stemming from the outer aspect of the Schwann cell membrane in the PNS, or by perinodal extensions from astrocytes in the CNS.
An alpha subunit forms the core of the channel and is functional on its own. When the alpha subunit protein is expressed by a cell, it is able to form a pore in the cell membrane that conducts Na + in a voltage-dependent way, even if beta subunits or other known modulating proteins are not expressed. When accessory proteins assemble with α ...
Let us consider a cell membrane in the form of a cylindrical cable. The position on the cable is denoted by x and the voltage across the cell membrane by V. The cable is characterized by a longitudinal resistance per unit length and a membrane resistance . If everything is linear, the voltage changes as a function of time