Search results
Results from the WOW.Com Content Network
In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet, and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862. [1]
Download as PDF; Printable version; ... Divergent series (2 C, 15 P) L. Limits (mathematics) ... Convergence problem; Convergent series;
Thus, there are two formulas to compute , depending on the convergence of which can be determined by various convergence tests. These formulas are similar to the Cauchy–Hadamard theorem for the radius of convergence of a power series.
Convergence in distribution is the weakest form of convergence typically discussed, since it is implied by all other types of convergence mentioned in this article. However, convergence in distribution is very frequently used in practice; most often it arises from application of the central limit theorem .
While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.
In a normed vector space, one can define absolute convergence as convergence of the series (| |). Absolute convergence implies Cauchy convergence of the sequence of partial sums (by the triangle inequality), which in turn implies absolute convergence of some grouping (not reordering). The sequence of partial sums obtained by grouping is a ...
Therefore, first, the series resulting from addition is summable if the series added were summable, and, second, the sum of the resulting series is the addition of the sums of the added series. The addition of two divergent series may yield a convergent series: for instance, the addition of a divergent series with a series of its terms times ...
The dual divergence to a Bregman divergence is the divergence generated by the convex conjugate F * of the Bregman generator of the original divergence. For example, for the squared Euclidean distance, the generator is x 2 {\displaystyle x^{2}} , while for the relative entropy the generator is the negative entropy x log x ...