Search results
Results from the WOW.Com Content Network
Comprehensive two-dimensional gas chromatography, or GC×GC, is a multidimensional gas chromatography technique that was originally described in 1984 by J. Calvin Giddings [1] and first successfully implemented in 1991 by John Phillips and his student Zaiyou Liu. [2] GC×GC utilizes two different columns with two different stationary phases. In ...
The response factor can be expressed on a molar, volume or mass [1] basis. Where the true amount of sample and standard are equal: = where A is the signal (e.g. peak area) and the subscript i indicates the sample and the subscript st indicates the standard. [2]
Gas chromatography-mass spectrometry (GC-MS) is a two-dimensional chromatography technique that combines the separation technique of gas chromatography with the identification technique of mass spectrometry. GC-MS is the single most important analytical tool for the analysis of volatile and semi-volatile organic compounds in complex mixtures. [7]
Chromatographic peak resolution is given by = + where t R is the retention time and w b is the peak width at baseline. The bigger the time-difference and/or the smaller the bandwidths, the better the resolution of the compounds.
Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance, or separating the different components of a mixture. [ 1 ]
The calibration curve that does not use the internal standard method ignores the uncertainty between measurements. The coefficient of determination (R 2) for this plot is 0.9985. In the calibration curve that uses the internal standard, the y-axis is the ratio of the nickel signal to the yttrium signal.
Headspace gas chromatography uses headspace gas—from the top or "head" of a sealed container containing a liquid or solid brought to equilibrium [1] —injected directly onto a gas chromatographic column for separation and analysis. In this process, only the most volatile (most readily existing as a vapor) substances make it to the column. [2]
The GC-VUV method uses a flow rate of 4 mL/min and an oven ramp of 35 °C (held for 1 min), followed by an increase to 245 °C at a rate of 30 °C/min. Figure 5 compares the results when the general conditions of the GC-MS method were followed against the GC-VUV method run with Class 2 residual solvents.