enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cell division - Wikipedia

    en.wikipedia.org/wiki/Cell_division

    Mitotic cell division enables sexually reproducing organisms to develop from the one-celled zygote, which itself is produced by fusion of two gametes, each having been produced by meiotic cell division. [5] [6] After growth from the zygote to the adult, cell division by mitosis allows for continual construction and repair of the organism. [7]

  3. Cell cycle - Wikipedia

    en.wikipedia.org/wiki/Cell_cycle

    The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.

  4. Biochemical switches in the cell cycle - Wikipedia

    en.wikipedia.org/wiki/Biochemical_switches_in...

    Fig. 2 Irreversible and bistable switch in mitotic exit with control parameter being Sic1 level and order parameter being cell cycle phases. Because eukaryotic cell cycle involves a variety of proteins and regulatory interactions, dynamical systems approach can be taken to simplify a complex biological circuit into a general framework for ...

  5. Eukaryote - Wikipedia

    en.wikipedia.org/wiki/Eukaryote

    The origin of the eukaryotic cell, or eukaryogenesis, is a milestone in the evolution of life, since eukaryotes include all complex cells and almost all multicellular organisms. The last eukaryotic common ancestor (LECA) is the hypothetical origin of all living eukaryotes, [ 71 ] and was most likely a biological population , not a single ...

  6. Microtubule organizing center - Wikipedia

    en.wikipedia.org/wiki/Microtubule_organizing_center

    The microtubule-organizing center (MTOC) is a structure found in eukaryotic cells from which microtubules emerge. MTOCs have two main functions: the organization of eukaryotic flagella and cilia and the organization of the mitotic and meiotic spindle apparatus, which separate the chromosomes during cell division.

  7. Cell cycle checkpoint - Wikipedia

    en.wikipedia.org/wiki/Cell_cycle_checkpoint

    Compared to the eukaryotic cell cycle, the prokaryotic cell cycle (known as binary fission) is relatively simple and quick: the chromosome replicates from the origin of replication, a new membrane is assembled, and the cell wall forms a septum which divides the cell into two. [7] As the eukaryotic cell cycle is a complex process, eukaryotes ...

  8. Cell polarity - Wikipedia

    en.wikipedia.org/wiki/Cell_polarity

    Furthermore, cell polarity is important during many types of asymmetric cell division to set up functional asymmetries between daughter cells. Many of the key molecular players implicated in cell polarity are well conserved. For example, in metazoan cells, the PAR-3/PAR-6/aPKC complex plays a fundamental role in cell polarity. While the ...

  9. Eukaryogenesis - Wikipedia

    en.wikipedia.org/wiki/Eukaryogenesis

    Eukaryogenesis, the process which created the eukaryotic cell and lineage, is a milestone in the evolution of life, since eukaryotes include all complex cells and almost all multicellular organisms. The process is widely agreed to have involved symbiogenesis , in which an archaeon and a bacterium came together to create the first eukaryotic ...