Search results
Results from the WOW.Com Content Network
The first three functions have points for which the limit does not exist, while the function = is not defined at =, but its limit does exist. respectively. If these limits exist at p and are equal there, then this can be referred to as the limit of f(x) at p. [7] If the one-sided limits exist at p, but are unequal, then there is no limit at ...
This is a list of limits for common functions such as elementary functions. In this article, the terms a , b and c are constants with respect to x . Limits for general functions
The adjective indeterminate does not imply that the limit does not exist, as many of the examples above show. In many cases, algebraic elimination, L'Hôpital's rule, or other methods can be used to manipulate the expression so that the limit can be evaluated.
A sequence that does not converge is said to be divergent. [3] The limit of a sequence is said to be the fundamental notion on which the whole of mathematical analysis ultimately rests. [1] Limits can be defined in any metric or topological space, but are usually first encountered in the real numbers.
Limits can be difficult to compute. There exist limit expressions whose modulus of convergence is undecidable. In recursion theory, the limit lemma proves that it is possible to encode undecidable problems using limits. [14] There are several theorems or tests that indicate whether the limit exists. These are known as convergence tests.
In computability theory, an undecidable problem is a decision problem for which an effective method (algorithm) to derive the correct answer does not exist. More formally, an undecidable problem is a problem whose language is not a recursive set; see the article Decidable language.
In mathematics, the limit of a sequence of sets,, … (subsets of a common set ) is a set whose elements are determined by the sequence in either of two equivalent ways: (1) by upper and lower bounds on the sequence that converge monotonically to the same set (analogous to convergence of real-valued sequences) and (2) by convergence of a sequence of indicator functions which are themselves ...
In multivariable calculus, an iterated limit is a limit of a sequence or a limit of a function in the form , = (,), (,) = ((,)),or other similar forms. An iterated limit is only defined for an expression whose value depends on at least two variables. To evaluate such a limit, one takes the limiting process as one of the two variables approaches some number, getting an expression whose value ...