Search results
Results from the WOW.Com Content Network
Great Circle Map Interactive tool for plotting great circle routes on a sphere. Great Circle Mapper Interactive tool for plotting great circle routes. Great Circle Calculator deriving (initial) course and distance between two points. Great Circle Distance Graphical tool for drawing great circles over maps. Also shows distance and azimuth in a ...
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
The disk bounded by a great circle is called a great disk: it is the intersection of a ball and a plane passing through its center. In higher dimensions, the great circles on the n-sphere are the intersection of the n-sphere with 2-planes that pass through the origin in the Euclidean space R n + 1. Half of a great circle may be called a great ...
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
Computes the great circle distance between two points, specified by the latitude and longitude, using the haversine formula. Template parameters [Edit template data] Parameter Description Type Status Latitude 1 lat1 1 Latitude of point 1 in decimal degrees Default 0 Number required Longitude 1 long1 2 Longitude of point 1 in decimal degrees Default 0 Number required Latitude 2 lat2 3 Latitude ...
The distinction between rhumb (sailing) distance and great circle (true) distance was clearly understood by Mercator. (See Legend 12 on the 1569 map.) He stressed that the rhumb line distance is an acceptable approximation for true great circle distance for courses of short or moderate distance, particularly at lower latitudes.
The shortest distance along the surface of a sphere between two points on the surface is along the great-circle which contains the two points. The great-circle distance article gives the formula for calculating the shortest arch length on a sphere about the size of the Earth. That article includes an example of the calculation.