Search results
Results from the WOW.Com Content Network
Early uses of the term Nyquist frequency, such as those cited above, are all consistent with the definition presented in this article.Some later publications, including some respectable textbooks, call twice the signal bandwidth the Nyquist frequency; [6] [7] this is a distinctly minority usage, and the frequency at twice the signal bandwidth is otherwise commonly referred to as the Nyquist rate.
In signal processing, the Nyquist rate, named after Harry Nyquist, is a value equal to twice the highest frequency of a given function or signal. It has units of samples per unit time, conventionally expressed as samples per second, or hertz (Hz). [ 1 ]
The term Nyquist Sampling Theorem (capitalized thus) appeared as early as 1959 in a book from his former employer, Bell Labs, [22] and appeared again in 1963, [23] and not capitalized in 1965. [24] It had been called the Shannon Sampling Theorem as early as 1954, [25] but also just the sampling theorem by several other books in the early 1950s.
The image sampling frequency is the repetition rate of the sensor integration period. Since the integration period may be significantly shorter than the time between repetitions, the sampling frequency can be different from the inverse of the sample time: 50 Hz – PAL video; 60 / 1.001 Hz ~= 59.94 Hz – NTSC video
When is normalized with reference to the sampling rate as ′ =, the normalized Nyquist angular frequency is π radians/sample. The following table shows examples of normalized frequency for f = 1 {\displaystyle f=1} kHz , f s = 44100 {\displaystyle f_{s}=44100} samples/second (often denoted by 44.1 kHz ), and 4 normalization conventions:
where is the pulse frequency (in pulses per second) and is the bandwidth (in hertz). The quantity later came to be called the Nyquist rate, and transmitting at the limiting pulse rate of pulses per second as signalling at the Nyquist rate. Nyquist published his results in 1928 as part of his paper "Certain topics in Telegraph Transmission Theory".
In signal processing the critical frequency it is also another name for the Nyquist frequency. Critical frequency is the highest magnitude of frequency above which the waves penetrate the ionosphere and below which the waves are reflected back from the ionosphere. It is denoted by "f c". Its value is not fixed and it depends upon the electron ...
Nyquist's original paper also provided the generalized noise for components having partly reactive response, e.g., sources that contain capacitors or inductors. [6] Such a component can be described by a frequency-dependent complex electrical impedance (). The formula for the power spectral density of the series noise voltage is