enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reciprocal lattice - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_lattice

    The direct lattice or real lattice is a periodic function in physical space, such as a crystal system (usually a Bravais lattice). The reciprocal lattice exists in the mathematical space of spatial frequencies or wavenumbers k, known as reciprocal space or k space; it is the dual of physical space considered as a vector space.

  3. Pearson symbol - Wikipedia

    en.wikipedia.org/wiki/Pearson_symbol

    For example, both the NaCl structure (space group Fm 3 m) and diamond (space group Fd 3 m) have the same Pearson symbol cF8. Due to this constraint, the Pearson symbol should only be used to designate simple structures (elements, some binary compound) where the number of atoms per unit cell equals, ideally, the number of translationally ...

  4. Bravais lattice - Wikipedia

    en.wikipedia.org/wiki/Bravais_lattice

    The seven lattice systems and their Bravais lattices in three dimensions. In geometry and crystallography, a Bravais lattice, named after Auguste Bravais (), [1] is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by

  5. Miller index - Wikipedia

    en.wikipedia.org/wiki/Miller_index

    This is based on the fact that a reciprocal lattice vector (the vector indicating a reciprocal lattice point from the reciprocal lattice origin) is the wavevector of a plane wave in the Fourier series of a spatial function (e.g., electronic density function) which periodicity follows the original Bravais lattice, so wavefronts of the plane wave ...

  6. Space group - Wikipedia

    en.wikipedia.org/wiki/Space_group

    The translations form a normal abelian subgroup of rank 3, called the Bravais lattice (so named after French physicist Auguste Bravais). There are 14 possible types of Bravais lattice. The quotient of the space group by the Bravais lattice is a finite group which is one of the 32 possible point groups.

  7. Crystal structure - Wikipedia

    en.wikipedia.org/wiki/Crystal_structure

    The translation vectors define the nodes of Bravais lattice. The lengths of principal axes/edges, of unit cell and angles between them are lattice constants, also called lattice parameters or cell parameters. The symmetry properties of crystal are described by the concept of space groups. [1]

  8. Brillouin zone - Wikipedia

    en.wikipedia.org/wiki/Brillouin_zone

    The first Brillouin zone is the locus of points in reciprocal space that are closer to the origin of the reciprocal lattice than they are to any other reciprocal lattice points (see the derivation of the Wigner–Seitz cell). Another definition is as the set of points in k-space that can be reached from the origin without crossing any Bragg plane.

  9. Crystal system - Wikipedia

    en.wikipedia.org/wiki/Crystal_system

    In geometry and crystallography, a Bravais lattice is a category of translative symmetry groups (also known as lattices) in three directions. Such symmetry groups consist of translations by vectors of the form R = n 1 a 1 + n 2 a 2 + n 3 a 3, where n 1, n 2, and n 3 are integers and a 1, a 2, and a 3 are three non-coplanar vectors, called ...