Search results
Results from the WOW.Com Content Network
The specific heat capacity of a substance, usually denoted by or , is the heat capacity of a sample of the substance, divided by the mass of the sample: [10] = =, where represents the amount of heat needed to uniformly raise the temperature of the sample by a small increment .
Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat to be supplied to an object to produce a unit change in its temperature. [1] The SI unit of heat capacity is joule per kelvin (J/K). Heat capacity is an extensive property.
The Kopp–Neumann law, named for Kopp and Franz Ernst Neumann, is a common approach for determining the specific heat C (in J·kg −1 ·K −1) of compounds using the following equation: [3] = =, where N is the total number of compound constituents, and C i and f i denote the specific heat and mass fraction of the i-th constituent. This law ...
where is the specific heat capacity (at constant pressure, in case of a gas) and is the density (mass per unit volume) of the material. This derivation assumes that the material has constant mass density and heat capacity through space as well as time.
This provides us with a method for calculating the expected values of many microscopic quantities. We add the quantity artificially to the microstate energies (or, in the language of quantum mechanics, to the Hamiltonian), calculate the new partition function and expected value, and then set λ to zero in the final expression.
The Mayer relation states that the specific heat capacity of a gas at constant volume is slightly less than at constant pressure. This relation was built on the reasoning that energy must be supplied to raise the temperature of the gas and for the gas to do work in a volume changing case.
Since the molar heat capacity of a substance is the specific heat c times the molar mass of the substance M/N its numerical value is generally smaller than that of the specific heat. Paraffin wax, for example, has a specific heat of about 2500 J⋅K −1 ⋅kg −1 but a molar heat capacity of about 600 J⋅K −1 ⋅mol −1.
In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (C P) to heat capacity at constant volume (C V).