Search results
Results from the WOW.Com Content Network
The Nyquist plot for () = + + with s = jω.. In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker [] at Siemens in 1930 [1] [2] [3] and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, [4] is a graphical technique ...
This is a technique used as a stability criterion in the field of classical control theory developed by Walter R. Evans which can determine stability of the system. The root locus plots the poles of the closed loop transfer function in the complex s -plane as a function of a gain parameter (see pole–zero plot ).
Liénard–Chipart criterion; Nyquist stability criterion; Routh–Hurwitz stability criterion; Vakhitov–Kolokolov stability criterion; Barkhausen stability criterion; Stability may also be determined by means of root locus analysis. Although the concept of stability is general, there are several narrower definitions through which it may be ...
These systems can be solved by powerful frequency domain mathematical techniques of great generality, such as the Laplace transform, Fourier transform, Z transform, Bode plot, root locus, and Nyquist stability criterion. Nonlinear control theory covers a wider class of systems that do not obey the superposition principle.
Nyquist criterion may refer to: Nyquist stability criterion, a graphical technique for determining the stability of a feedback control system; Nyquist frequency, ½ of the sampling rate of a discrete signal processing system; Nyquist rate, a rate used in signal processing; Nyquist ISI criterion, a condition to avoid intersymbol interference
Another related use of the complex plane is with the Nyquist stability criterion. This is a geometric principle which allows the stability of a closed-loop feedback system to be determined by inspecting a Nyquist plot of its open-loop magnitude and phase response as a function of frequency (or loop transfer function) in the complex plane.
The fourth graph depicts the spectral result of sampling at the same rate as the baseband function. The rate was chosen by finding the lowest rate that is an integer sub-multiple of A and also satisfies the baseband Nyquist criterion: f s > 2B. Consequently, the bandpass function has effectively been converted to baseband.
Thus the criterion provides a way to determine if the equations of motion of a linear system have only stable solutions, without solving the system directly. For discrete systems, the corresponding stability test can be handled by the Schur–Cohn criterion, the Jury test and the Bistritz test. With the advent of computers, the criterion has ...