enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generalized additive model for location, scale and shape

    en.wikipedia.org/wiki/Generalized_additive_model...

    The first two population distribution parameters and are usually characterized as location and scale parameters, while the remaining parameter(s), if any, are characterized as shape parameters, e.g. skewness and kurtosis parameters, although the model may be applied more generally to the parameters of any population distribution with up to four ...

  3. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    Also known as min-max scaling or min-max normalization, rescaling is the simplest method and consists in rescaling the range of features to scale the range in [0, 1] or [−1, 1]. Selecting the target range depends on the nature of the data. The general formula for a min-max of [0, 1] is given as: [3]

  4. Neural scaling law - Wikipedia

    en.wikipedia.org/wiki/Neural_scaling_law

    One method for scaling up test-time compute is process-based supervision, where a model generates a step-by-step reasoning chain to answer a question, and another model (either human or AI) provides a reward score on some of the intermediate steps, not just the final answer. Process-based supervision can be scaled arbitrarily by using synthetic ...

  5. Weka (software) - Wikipedia

    en.wikipedia.org/wiki/Weka_(software)

    Waikato Environment for Knowledge Analysis (Weka) is a collection of machine learning and data analysis free software licensed under the GNU General Public License.It was developed at the University of Waikato, New Zealand and is the companion software to the book "Data Mining: Practical Machine Learning Tools and Techniques".

  6. Chinchilla (language model) - Wikipedia

    en.wikipedia.org/wiki/Chinchilla_(language_model)

    It is named "chinchilla" because it is a further development over a previous model family named Gopher. Both model families were trained in order to investigate the scaling laws of large language models. [2] It claimed to outperform GPT-3. It considerably simplifies downstream utilization because it requires much less computer power for ...

  7. Platt scaling - Wikipedia

    en.wikipedia.org/wiki/Platt_scaling

    In machine learning, Platt scaling or Platt calibration is a way of transforming the outputs of a classification model into a probability distribution over classes. The method was invented by John Platt in the context of support vector machines , [ 1 ] replacing an earlier method by Vapnik , but can be applied to other classification models. [ 2 ]

  8. Group method of data handling - Wikipedia

    en.wikipedia.org/wiki/Group_method_of_data_handling

    First, we split the full dataset into two parts: a training set and a validation set. The training set would be used to fit more and more model parameters, and the validation set would be used to decide which parameters to include, and when to stop fitting completely. The GMDH starts by considering degree-2 polynomial in 2 variables.

  9. Iterative proportional fitting - Wikipedia

    en.wikipedia.org/wiki/Iterative_proportional_fitting

    The iterative proportional fitting procedure (IPF or IPFP, also known as biproportional fitting or biproportion in statistics or economics (input-output analysis, etc.), RAS algorithm [1] in economics, raking in survey statistics, and matrix scaling in computer science) is the operation of finding the fitted matrix which is the closest to an initial matrix but with the row and column totals of ...