Search results
Results from the WOW.Com Content Network
The statement being tested in a test of statistical significance is called the null hypothesis. The test of significance is designed to assess the strength of the evidence against the null hypothesis, or a statement of 'no effect' or 'no difference'. [2] It is often symbolized as H0. The statement that is being tested against the null ...
Statistical significance. In statistical hypothesis testing, [1][2] a result has statistical significance when a result at least as "extreme" would be very infrequent if the null hypothesis were true. [3] More precisely, a study's defined significance level, denoted by , is the probability of the study rejecting the null hypothesis, given that ...
From the t-test, the difference between the group means is 6-2=4. From the regression, the slope is also 4 indicating that a 1-unit change in drug dose (from 0 to 1) gives a 4-unit change in mean word recall (from 2 to 6). The t-test p-value for the difference in means, and the regression p-value for the slope, are both 0.00805. The methods ...
p. -value. In null-hypothesis significance testing, the p-value[note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2][3] A very small p -value means that such an extreme observed outcome would be very unlikely under the null hypothesis.
A statistical hypothesis test typically involves a calculation of a test statistic. Then a decision is made, either by comparing the test statistic to a critical value or equivalently by evaluating a p -value computed from the test statistic. Roughly 100 specialized statistical tests have been defined. [1][2]
Tukey's range test, also known as Tukey's test, Tukey method, Tukey's honest significance test, or Tukey's HSD (honestly significant difference) test, [1] is a single-step multiple comparison procedure and statistical test. It can be used to correctly interpret the statistical significance of the difference between means that have been selected ...
In statistics, Levene's test is an inferential statistic used to assess the equality of variances for a variable calculated for two or more groups. [1] This test is used because some common statistical procedures assume that variances of the populations from which different samples are drawn are equal. Levene's test assesses this assumption.
After obtaining the difference scores for all possible pairs of groups, the variances of each group difference can be contrasted. From the example in Figure 1, the variance of the differences between Treatment A and B (17) appear to be much greater than the variance of the differences between Treatment A and C (10.3) and between Treatment B and ...