Search results
Results from the WOW.Com Content Network
The first block is a unit block and the dashed line represents the infinite sum of the sequence, a number that it will forever approach but never touch: 2, 3/2, and 4/3 respectively. A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying ...
In mathematics, a geometric series is a series summing the terms of an infinite geometric sequence, in which the ratio of consecutive terms is constant. For example, the series is a geometric series with common ratio , which converges to the sum of . Each term in a geometric series is the geometric mean of the term before it and ...
v. t. e. In mathematics, an arithmetico-geometric sequence is the result of element-by-element multiplication of the elements of a geometric progression with the corresponding elements of an arithmetic progression. The n th element of an arithmetico-geometric sequence is the product of the n th element of an arithmetic sequence and the n th ...
In mathematics, a telescoping series is a series whose general term is of the form , i.e. the difference of two consecutive terms of a sequence . As a consequence the partial sums of the series only consists of two terms of after cancellation. [1][2] The cancellation technique, with part of each term cancelling with part of the next term, is ...
For quadratic Bézier curves one can construct intermediate points Q 0 and Q 1 such that as t varies from 0 to 1: Point Q 0 (t) varies from P 0 to P 1 and describes a linear Bézier curve. Point Q 1 (t) varies from P 1 to P 2 and describes a linear Bézier curve. Point B(t) is interpolated linearly between Q 0 (t) to Q 1 (t) and describes a ...
Generating function. In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series. Generating functions are often expressed in closed form (rather than as a series), by some expression involving operations on the formal series. There are various types of generating ...
In combinatorics, the Eulerian number is the number of permutations of the numbers 1 to in which exactly elements are greater than the previous element (permutations with "ascents"). Leonhard Euler investigated them and associated polynomials in his 1755 book Institutiones calculi differentialis. The polynomials presently known as Eulerian ...
Euler numbers. In mathematics, the Euler numbers are a sequence En of integers (sequence A122045 in the OEIS) defined by the Taylor series expansion. where is the hyperbolic cosine function. The Euler numbers are related to a special value of the Euler polynomials, namely: The Euler numbers appear in the Taylor series expansions of the secant ...