Search results
Results from the WOW.Com Content Network
In the laboratory, this liquid serves as a source of HCN, which is inconveniently volatile. [4] Thus, acetone cyanohydrin can be used for the preparation of other cyanohydrins, for the transformation of HCN to Michael acceptors, and for the formylation of arenes. Treatment of this cyanohydrin with lithium hydride affords anhydrous lithium cyanide:
In transhydrocyanation, an equivalent of HCN is transferred from a cyanohydrin, e.g. acetone cyanohydrin, to another HCN acceptor. The transfer is an equilibrium process, initiated by base. The reaction can be driven by trapping reactions or by the use of a superior HCN acceptor, such as an aldehyde. [6]
Glycolonitrile, also called hydroxyacetonitrile or formaldehyde cyanohydrin, is the organic compound with the formula HOCH 2 CN. It is the simplest cyanohydrin and it is derived from formaldehyde . [ 3 ]
Another synthetic pathway for α-hydroxy acids involves the addition of hydrogen cyanide to ketones or aldehydes, followed by the acidic hydrolysis of the cyanohydrin intermediate. [14] R−CHO + HCN → R−CH(OH)CN R−CH(OH)CN + 2H 2 O → R−CH(OH)CO 2 H + NH 3
It is used as a surrogate in place of HCN, as illustrated by its use as a precursor to lithium cyanide: [8] (CH 3) 2 C(OH)CN + LiH → (CH 3) 2 CO + LiCN + H 2. In transhydrocyanation, an equivalent of HCN is transferred from acetone cyanohydrin to another acceptor, with acetone as byproduct. The transfer is an equilibrium process, initiated by ...
In organic chemistry, a cyanohydrin reaction is an organic reaction in which an aldehyde (−CH=O) or ketone (>C=O) reacts with a cyanide anion (N≡C −) or a nitrile (−C≡N) to form a cyanohydrin (>C(OH)C≡N). For example:
Unexplained changes in cholesterol may help identify older adults at risk for dementia,study finds. Experts explain cholesterol and dementia risk.
LiCN is produced from the reaction of lithium hydroxide and hydrogen cyanide. A laboratory-scale preparation uses acetone cyanohydrin as a surrogate for HCN: [5] (CH 3) 2 C(OH)CN + LiH → (CH 3) 2 CO + LiCN + H 2